Advanced SearchSearch Tips
Excellent field emission properties from carbon nanotube field emitters fabricated using a filtration-taping method
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 15, Issue 3,  2014, pp.214-217
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2014.15.3.214
 Title & Authors
Excellent field emission properties from carbon nanotube field emitters fabricated using a filtration-taping method
Shin, Dong Hoon; Jung, Seung; Yun, Ki Nam; Chen, Guohai; Jeon, Seok-Gy; Kim, Jung-Il; Lee, Cheol Jin;
  PDF(new window)
A filtration-taping method was demonstrated to fabricate carbon nanotube (CNT) emitters. This method shows many good features, including high mechanical adhesion, good electrical contact, low temperature, organic-free, low cost, large size, and suitability for various CNT materials and substrates. These good features promise an advanced field emission performance with a turn-on field of at a current density of , a threshold field of at a current density of , and a good stability of over 20 h. The filtration-taping technique is an effective way to realize low-cost, large-size, and high-performance CNT emitters.
field emission properties;carbon nanotube;filtration-taping method;
 Cited by
Fabrication and Field Emission Properties of Diamond-Like Carbon Nanostructure Arrays Deposited by Filtered Cathodic Vacuum Arc, Plasma Processes and Polymers, 2016, 13, 11, 1044  crossref(new windwow)
de Heer WA, Chatelain A, Ugarte D. A carbon nanotube fieldemission electron source. Science, 270, 1179 (1995). crossref(new window)

Saito Y, Uemura S. Field emission from carbon nanotubes and its application to electron sources. Carbon, 38, 169 (2000). crossref(new window)

de Jonge N, Lamy Y, Schoots K, Oosterkamp TH. High brightness electron beam from a multi-walled carbon nanotube. Nature, 420, 393 (2002). crossref(new window)

Liu ZJ, Yang G, Lee YZ, Bordelon D, Lu JP, Zhou O. Carbon nanotube based microfocus field emission x-ray source for microcomputed tomography. Appl Phys Lett, 89, 103111 (2006). crossref(new window)

Yabushita R, Hata K. Development of high spatial resolution x-ray radiography system equipped with multiwalled carbon nanotube field emission cathode. J Vac Sci Technol B, 26, 702 (2008). crossref(new window)

Chen G, Shin DH, Iwasaki T, Kawarada H, Lee CJ. Enhanced field emission properties of vertically aligned double-walled carbon nanotube arrays. Nanotechnology, 19, 415703 (2008). crossref(new window)

Ren ZF, Huang ZP, Xu JW, Wang JH, Bush P, Siegal MP, Provencio PN. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science, 282, 1105 (1998). crossref(new window)

Choi WB, Chung DS, Kang JH, Kim HY, Jin YW, Han IT, Lee YH, Jung JE, Lee NS, Park GS, Kim JM. Fully sealed, high-brightness carbon-nanotube field-emission display. Appl Phys Lett, 75, 3129 (1999). crossref(new window)

Gao B, Yue GZ, Qiu Q, Cheng Y, Shimoda H, Fleming L, Zhou O. Fabrication and electron field emission properties of carbon nanotube films by electrophoretic deposition. Adv Mater, 13, 1770 (2001).<1770::AIDADMA1770>3.0.CO;2-G. crossref(new window)

Jung SI, Choi JS, Shim HC, Kim S, Jo SH, Lee CJ. Fabrication of probe-typed carbon nanotube point emitters. Appl Phys Lett, 89, 233108 (2006). crossref(new window)

Chun KY, Choi SK, Kang HJ, Park CY, Lee CJ. Highly dispersed multi-walled carbon nanotubes in ethanol using potassium doping. Carbon, 44, 1491 (2006). crossref(new window)

Wu ZC, Chen ZH, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG. Transparent, conductive carbon nanotube films. Science, 305, 1273 (2004). crossref(new window)

Fujii S, Honda S, Machida H, Kawai H, Ishida K, Katayama M, Furuta H, Hirao T, Oura K. Efficient field emission from an individual aligned carbon nanotube bundle enhanced by edge effect. Appl Phys Lett, 90, 153108 (2007). crossref(new window)

Chhowalla M, Ducati C, Rupesinghe NL, Teo KBK, Amaratunga GAJ. Field emission from short and stubby vertically aligned carbon nanotubes. Appl Phys Lett, 79, 2079 (2001). crossref(new window)

Zeng BQ, Xiong GY, Chen S, Wang WZ, Wang DZ, Ren ZF. Enhancement of field emission of aligned carbon nanotubes by thermal oxidation. Appl Phys Lett, 89, 223119 (2006). crossref(new window)

Kim YC, Sohn KH, Cho YM, Yoo EH. Vertical alignment of printed carbon nanotubes by multiple field emission cycles. Appl Phys Lett, 84, 5350 (2004). crossref(new window)

Chen KF, Chen KC, Jiang YC, Jiang LY, Chang YY, Hsiao MC, Chan LH. Field emission image uniformity improvement by laser treating carbon nanotube powders. Appl Phys Lett, 88, 193127 (2006). crossref(new window)

Liang XH, Deng SZ, Xu NS, Chen J, Huang NY, She JC. On achieving better uniform carbon nanotube field emission by electrical treatment and the underlying mechanism. Appl Phys Lett, 88, 111501 (2006). crossref(new window)

Weng CH, Leou KC, Wei HW, Juang ZY, Wei MT, Tung CH, Tsai CH. Structural transformation and field emission enhancement of carbon nanofibers by energetic argon plasma post-treatment. Appl Phys Lett, 85, 4732 (2004). crossref(new window)

Kim JS, Ahn KS, Kim CO, Hong JP. Ultraviolet laser treatment of multiwall carbon nanotubes grown at low temperature. Appl Phys Lett, 82, 1607 (2003). crossref(new window)

Vink TJ, Gillies M, Kriege JC, van de Laar HWJJ. Enhanced field emission from printed carbon nanotubes by mechanical surface modification. Appl Phys Lett, 83, 3552 (2003). crossref(new window)

Jeong HJ, Choi HK, Kim GY, Song YI, Tong Y, Lim SC, Lee YH. Fabrication of efficient field emitters with thin multiwalled carbon nanotubes using spray method. Carbon, 44, 2689 (2006). crossref(new window)

Qian C, Qi H, Gao B, Cheng Y, Qiu Q, Qin LC, Zhou O, Liu J. Fabrication of small diameter few-walled carbon nanotubes with enhanced field emission property. J Nanosci Nanotechnol, 6, 1346 (2006). crossref(new window)

Moon JS, Alegaonkar PS, Han JH, Lee TY, Yoo JB, Kim JM. Enhanced field emission properties of thin-multiwalled carbon nanotubes: role of $SiO_x$ coating. J Appl Phys, 100, 104303 (2006). crossref(new window)