JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Carbon-allotropes: synthesis methods, applications and future perspectives
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 15, Issue 4,  2014, pp.219-237
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2014.15.4.219
 Title & Authors
Carbon-allotropes: synthesis methods, applications and future perspectives
Karthik, P.S.; Himaja, A.L.; Singh, Surya Prakash;
  PDF(new window)
 Abstract
The element carbon has been used as a source of energy for the past few hundred years, and now in this era of technology, carbon has played a significant and very prominent role in almost all fields of science and technology. So as an honour to this marvellous element, we humans should know about its various forms of existence. In this review article, we shed light on all possible carbon-allotropes; similarities in their synthesis techniques and the starting materials; their wide range of possible availability; and finally, future perspectives and applications. A brief introduction is given on the types, structures, and shapes of the allotropes of carbon for a better understanding.
 Keywords
carbon nanomaterials;carbon-allotropes;fullerenes;carbon nan otubes;synthesis;
 Language
English
 Cited by
1.
Carbon nanotubes synthesis using diffusion and premixed flame methods: a review,;;;;;

Carbon letters, 2015. vol.16. 1, pp.1-10 crossref(new window)
1.
Isomerization of sp2-hybridized carbon nanomaterials: structural transformation and topological defects of fullerene, carbon nanotube, and graphene, Wiley Interdisciplinary Reviews: Computational Molecular Science, 2016  crossref(new windwow)
2.
Conductive silver inks and their applications in printed and flexible electronics, RSC Adv., 2015, 5, 95, 77760  crossref(new windwow)
3.
Carbon nanotubes synthesis using diffusion and premixed flame methods: a review, Carbon letters, 2015, 16, 1, 1  crossref(new windwow)
4.
Electrocatalytic Interface Based on Novel Carbon Nanomaterials for Advanced Electrochemical Sensors, ChemCatChem, 2015, 7, 18, 2744  crossref(new windwow)
 References
1.
Kenney D, Center BP. Deep Carbon Observatory releases "Carbon on Earth" [Internet], c2013. Available from: http://blog.mbl.edu/?p=2221.

2.
Chang R. Chemistry. 9th ed., McGrawHill Higher Education, Boston, MA, 52 (2007).

3.
Hirsch A. The era of carbon allotropes. Nat Mater, 9, 868 (2010). http://dx.doi.org/10.1038/nmat2885. crossref(new window)

4.
Wikipedia. Allotropes of carbon [Internet]. Available from: http://en.wikipedia.org/wiki/Allotropes_of_carbon#mediaviewer/File:Eight_Allotropes_of_Carbon.png.

5.
Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE. $C_{60}$: Buckminsterfullerene. Nature, 318, 162 (1985). http://dx.doi.org/10.1038/318162a0. crossref(new window)

6.
Iijima S. Helical microtubules of graphitic carbon. Nature, 354, 56 (1991). http://dx.doi.org/10.1038/354056a0. crossref(new window)

7.
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 306, 666 (2004). http://dx.doi.org/10.1126/science.1102896. crossref(new window)

8.
Li LS, Yan X. Colloidal graphene quantum dots. J Phys Chem Lett, 1, 2572 (2010). http://dx.doi.org/10.1021/jz100862f. crossref(new window)

9.
Li LL, Ji J, Fei R, Wang CZ, Lu Q, Zhang JR, Jiang LP, Zhu JJ. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv Funct Mater, 22, 2971 (2012). http://dx.doi.org/10.1002/adfm.201200166. crossref(new window)

10.
Frondel C, Marvin UB. Lonsdaleite, a hexagonal polymorph of diamond. Nature, 214, 587 (1967). http://dx.doi.org/10.1038/214587a0. crossref(new window)

11.
Bundy FP, Kasper JS. Hexagonal diamond: a new form of carbon. J Chem Phys, 46, 3437 (1967). http://dx.doi.org/10.1063/1.1841236. crossref(new window)

12.
Lonsdaleite [Internet]. Available from: http://www.answers.com/topic/lonsdaleite.

13.
Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385 (2008). http://dx.doi.org/10.1126/science.1157996. crossref(new window)

14.
Pal'yanov YN, Sokol AG, Borzdov YM, Khokhryakov AF, Sobolev NV. Diamond formation from mantle carbonate fluids. Nature, 400, 417 (1999). http://dx.doi.org/10.1038/22678. crossref(new window)

15.
Kaiser W, Bond WL. Nitrogen, a major impurity in common type I diamond. Phys Rev, 115, 857 (1959). http://dx.doi.org/10.1103/PhysRev.115.857. crossref(new window)

16.
Kratschmer W, Lamb LD, Fostiropoulos K, Huffman DR. Solid $C_{60}$: a new form of carbon. Nature, 347, 354 (1990). http://dx.doi.org/10.1038/347354a0. crossref(new window)

17.
Ando T. The electronic properties of graphene and carbon nanotubes. NPG Asia Mater, 1, 17 (2009). http://dx.doi.org/10.1038/asiamat.2009.1. crossref(new window)

18.
Johnson RR. About carbon/boron nitride nanostructure builder plugin [Internet]. Available from: http://www.ks.uiuc.edu/Research/vmd/plugins/nanotube/.

19.
Pfeiffer R, Pichler T, Kim Y, Kuzmany H. Double-wall carbon nanotubes. In: Jorio A, Dresselhaus G, Dresselhaus M, eds. Carbon Nanotubes, Vol. 111, Springer Berlin, Heidelberg, 495 (2008). http://dx.doi.org/10.1007/978-3-540-72865-8_16.

20.
Choudhary V, Gupta A. Polymer/carbon nanotube nanocomposites. In: Yellampalli S, ed. Carbon Nanotubes: Polymer Nanocomposites, Chapter 4, InTech (2011). http://dx.doi.org/10.5772/18423. crossref(new window)

21.
Parker CB, Raut AS, Brown B, Stoner BR, Glass JT. Three-dimensional arrays of graphenated carbon nanotubes. J Mater Res, 27, 1046 (2012). http://dx.doi.org/10.1557/jmr.2012.43. crossref(new window)

22.
Yu K, Lu G, Bo Z, Mao S, Chen J. Carbon nanotube with chemically bonded graphene leaves for electronic and optoelectronic applications. J Phys Chem Lett, 2, 1556 (2011). http://dx.doi.org/10.1021/jz200641c. crossref(new window)

23.
Zhao X, Liu Y, Inoue S, Suzuki T, Jones RO, Ando Y. Smallest carbon nanotube is 3 ${\AA}$ in diameter. Phys Rev Lett, 92, 125502 (2004). http://dx.doi.org/10.1103/PhysRevLett.92.125502. crossref(new window)

24.
Ishii Y, Matsuura S, Segawa Y, Itami K. Synthesis and dimerization of chloro[10]cycloparaphenylene: a directly connected cycloparaphenylene dimer. Org Lett, 16, 2174 (2014). http://dx.doi.org/10.1021/ol500643c. crossref(new window)

25.
C121258: [12]Cycloparaphenylene [Internet]. Available from: http://www.aladdin-e.com/itemDetail.do?cust_item=C121258-10mg&whs_id=1.

26.
Martel R, Shea HR, Avouris P. Rings of single-walled carbon nanotubes. Nature, 398, 299 (1999). http://dx.doi.org/10.1038/18589. crossref(new window)

27.
Itoh S, Ihara S, Kitakami J. Toroidal form of carbon C360. Phys Rev B, 47, 1703 (1993). http://dx.doi.org/10.1103/PhysRevB.47.1703. crossref(new window)

28.
Laguna Design. Nanotube Technology, Computer Artwork [Intertion net], c2013. Available from: http://fineartamerica.com/featured/3-nanotube-technology-computer-artwork-laguna-design.html.

29.
Krasheninnikov A. NanoBud.JPG [Internet], c2006. Available from: https://www.newworldencyclopedia.org/entry/File:NanoBud.JPG.

30.
Hornbaker DJ, Kahng SJ, Misra S, Smith BW, Johnson AT, Mele EJ, Luzzi DE, Yazdani A. Mapping the one-dimensional electronic states of nanotube peapod structures. Science, 295, 828 (2002). http://dx.doi.org/10.1126/science.1068133. crossref(new window)

31.
Okada S, Saito S, Oshiyama A. Energetics and electronic structures of encapsulated C60 in a carbon nanotube. Phys Rev Lett, 86, 3835 (2001). http://dx.doi.org/10.1103/PhysRevLett.86.3835. crossref(new window)

32.
Britz DA, Khlobystov AN, Wang J, O'Neil AS, Poliakoff M, Ardavan A, Briggs GA. Selective host-guest interaction of singlewalled carbon nanotubes with functionalised fullerenes. Chem Commun, 176 (2004). http://dx.doi.org/10.1039/b313585c. crossref(new window)

33.
Endo M, Kim YA, Hayashi T, Fukai Y, Oshida K, Terrones M, Yanagisawa T, Higaki S, Dresselhaus MS. Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl Phys Lett, 80, 1267 (2002). http://dx.doi.org/10.1063/1.1450264. crossref(new window)

34.
Liu Q, Ren W, Chen ZG, Yin L, Li F, Cong H, Cheng HM. Semiconducting properties of cup-stacked carbon nanotubes. Carbon, 47, 731 (2009). http://dx.doi.org/10.1016/j.carbon.2008.11.005. crossref(new window)

35.
Monthioux M, Noe L, Dussault L, Dupin JC, Latorre N, Ubieto T, Romeo E, Royo C, Monzon A, Guimon C. Texturising and structurising mechanisms of carbon nanofilaments during growth. J Mater Chem, 17, 4611 (2007). http://dx.doi.org/10.1039/B707742D. crossref(new window)

36.
Mitchell DR, Brown RM Jr., Spires TL, Romanovicz DK, Lagow RJ. The synthesis of megatubes: new dimensions in carbon materials. Inorg Chem, 40, 2751 (2001). http://dx.doi.org/10.1021/ic000551q. crossref(new window)

37.
Lagow R, Mitchell D, RM Brown Lab. Carbon Megatubes [Internet], c2000. Available from: http://www.botany.utexas.edu/facstaff/facpages/mbrown/tubes/.

38.
McDonough JK, Gogotsi Y. Carbon onions: synthesis and electrochemical applications. Interface, 22, 61 (2013).

39.
Kuznetsov VL, Chuvilin AL, Butenko YV, Mal'kov IY, Titov VM. Onion-like carbon from ultra-disperse diamond. Chem Phys Lett, 222, 343 (1994). http://dx.doi.org/10.1016/0009-2614(94)87072-1. crossref(new window)

40.
Kuznetsov VL, Chuvilin AL, Moroz EM, Kolomiichuk VN, Shaikhutdinov SK, Butenko YV, Mal'kov IY. Effect of explosion conditions on the structure of detonation soots: ultradisperse diamond and onion carbon. Carbon, 32, 873 (1994). http://dx.doi.org/10.1016/0008-6223(94)90044-2. crossref(new window)

41.
Delgado JL, Herranz MaA, Martin N. The nano-forms of carbon. J Mater Chem, 18, 1417 (2008). http://dx.doi.org/10.1039/B717218D. crossref(new window)

42.
National Aeronautics and Space Administration (NASA). Building a buckyball particle in space [Internet], c2012. Available from: http://www.nasa.gov/mission_pages/spitzer/multimedia/pia15266.html.

43.
Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc, 126, 12736 (2004). http://dx.doi.org/10.1021/ja040082h. crossref(new window)

44.
Liu HJ, Cui WJ, Jin LH, Wang CX, Xia YY. Preparation of three-dimensional ordered mesoporous carbon sphere arrays by a two-step templating route and their application for supercapacitors. J Mater Chem, 19, 3661 (2009). http://dx.doi.org/10.1039/B819820A. crossref(new window)

45.
University of Wisconsin-Madison. Bucky_nanofiber_detail05.jpg [Internet], c2005. Available from: http://www.news.wisc.edu/newsphotos/images/Bucky_nanofiber_detail05.jpg.

46.
Nano-C. Fullerene Technology [Internet]. Available from: http://www.nano-c.com/fullerenetech.html.

47.
Wang X, Li Q, Xie J, Jin Z, Wang J, Li Y, Jiang K, Fan S. Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Lett, 9, 3137 (2009). http://dx.doi.org/10.1021/nl901260b. crossref(new window)

48.
Liu BC, Lyu SC, Lee TJ, Choi SK, Eum SJ, Yang CW, Park CY, Lee CJ. Synthesis of single- and double-walled carbon nanotubes by catalytic decomposition of methane. Chem Phys Lett, 373, 475 (2003). http://dx.doi.org/10.1016/S0009-2614(03)00636-5. crossref(new window)

49.
Dubey P, Muthukumaran D, Dash S, Mukhopadhyay R, Sarkar S. Synthesis and characterization of water-soluble carbon nanotubes from mustard soot. Pramana, 65, 681 (2005). http://dx.doi.org/10.1007/BF03010456. crossref(new window)

50.
Wang Z, Zhao Z, Qiu J. Synthesis of branched carbon nanotubes from coal. Carbon, 44, 1321 (2006). http://dx.doi.org/10.1016/j.carbon.2005.12.030. crossref(new window)

51.
Qiu J, Li Y, Wang Y, Li W. Production of carbon nanotubes from coal. Fuel Process Technol, 85, 1663 (2004). http://dx.doi.org/10.1016/j.fuproc.2003.12.010. crossref(new window)

52.
Bang JJ, Trillo EA, Murr LE. Utilization of selected area electron diffraction patterns for characterization of air submicron particulate matter collected by a thermophoretic precipitator. J Air Waste Manage Assoc, 53, 227 (2003). http://dx.doi.org/10.1080/10473289.2003.10466133. crossref(new window)

53.
Murr LE, Guerrero PA. Carbon nanotubes in wood soot. Atmos Sci Lett, 7, 93 (2006). http://dx.doi.org/10.1002/asl.138. crossref(new window)

54.
de Heer WA, Ugarte D. Carbon onions produced by heat treatment of carbon soot and their relation to the 217.5 nm interstellar absorption feature. Chem Phys Lett, 207, 480 (1993). http://dx.doi.org/10.1016/0009-2614(93)89033-E. crossref(new window)

55.
He C, Zhao N, Du X, Shi C, Ding J, Li J, Li Y. Low-temperature synthesis of carbon onions by chemical vapor deposition using a nickel catalyst supported on aluminum. Scripta Mater, 54, 689 (2006). http://dx.doi.org/10.1016/j.scriptamat.2005.09.058. crossref(new window)

56.
Miao JY, Hwang DW, Narasimhulu KV, Lin PI, Chen YT, Lin SH, Hwang LP. Synthesis and properties of carbon nanospheres grown by CVD using Kaolin supported transition metal catalysts. Carbon, 42, 813 (2004). http://dx.doi.org/10.1016/j.carbon.2004.01.053. crossref(new window)

57.
Mohan AN, Manoj B. Synthesis and characterization of carbon nanospheres from hydrocarbon soot. Int J Electrochem Sci, 7, 9537 (2012).

58.
Liu H, Ye T, Mao C. Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed, 46, 6473 (2007). http://dx.doi.org/10.1002/anie.200701271. crossref(new window)

59.
De B, Karak N. A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Adv, 3, 8286 (2013). http://dx.doi.org/10.1039/C3RA00088E. crossref(new window)

60.
Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed, 49, 6726 (2010). http://dx.doi.org/10.1002/anie.200906623. crossref(new window)

61.
Zheng GB, Kouda K, Sano H, Uchiyama Y, Shi YF, Quan HJ. A model for the structure and growth of carbon nanofibers synthesized by the CVD method using nickel as a catalyst. Carbon, 42, 635 (2004). http://dx.doi.org/10.1016/j.carbon.2003.12.077. crossref(new window)

62.
Zhou Z, Lai C, Zhang L, Qian Y, Hou H, Reneker DH, Fong H. Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer, 50, 2999 (2009). http://dx.doi.org/10.1016/j.polymer.2009.04.058. crossref(new window)

63.
Kamat P. Carbon nanomaterials: building blocks in energy conversion devices. Interface, 15, 45 (2006).

64.
Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 146, 351 (2008). http://dx.doi.org/10.1016/j.ssc.2008.02.024. crossref(new window)

65.
Lin YM, Dimitrakopoulos C, Farmer DB, Han SJ, Wu Y, Zhu W, Gaskill DK, Tedesco JL, Myers-Ward RL, Eddy CR, Jr., Grill A, Avouris P. Multicarrier transport in epitaxial multilayer graphene. Appl Phys Lett, 97, 112107 (2010). http://dx.doi.org/10.1063/1.3485671. crossref(new window)

66.
Choi H, Kim H, Hwang S, Choi W, Jeon M. Dye-sensitized solar cells using graphene-based carbon nano composite as counter electrode. Sol Energy Mater Sol Cells, 95, 323 (2011). http://dx.doi.org/10.1016/j.solmat.2010.04.044. crossref(new window)

67.
Thompson BC, Frechet JMJ. Polymer: fullerene composite solar cells. Angew Chem Int Ed, 47, 58 (2008). http://dx.doi.org/10.1002/anie.200702506. crossref(new window)

68.
Friedman SH, DeCamp DL, Sijbesma RP, Srdanov G, Wudl F, Kenyon GL. Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification. J Am Chem Soc, 115, 6506 (1993). http://dx.doi.org/10.1021/ja00068a005. crossref(new window)

69.
Holczer K, Klein O, Huang SM, Kaner RB, Fu K, Whetten RL, Diederich F. Alkali-fulleride superconductors: synthesis, composition, and diamagnetic shielding. Science, 252, 1154 (1991). http://dx.doi.org/10.1126/science.252.5009.1154. crossref(new window)

70.
Allemand PM, Khemani KC, Koch A, Wudl F, Holczer K, Donovan S, Gruner G, Thompson JD. Organic molecular soft ferromagnetism in a fullerene$C_{60}$. Science, 253, 301 (1991). http://dx.doi.org/10.1126/science.253.5017.301. crossref(new window)

71.
Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol, 9, 674 (2005). http://dx.doi.org/10.1016/j.cbpa.2005.10.005. crossref(new window)

72.
Bianco A, Prato M. Can carbon nanotubes be considered useful tools for biological applications? Adv Mater, 15, 1765 (2003). http://dx.doi.org/10.1002/adma.200301646. crossref(new window)

73.
Atashbar MZ, Bejcek B, Singamaneni S, Santucci S. Carbon nanotube based biosensors. Proceedings of IEEE Sensors, Vienna, Austria, 1048 (2004). http://dx.doi.org/10.1109/ICSENS.2004.1426354. crossref(new window)

74.
Sotiropoulou S, Chaniotakis NA. Carbon nanotube array-based biosensor. Anal Bioanal Chem, 375, 103 (2003). http://dx.doi.org/10.1007/s00216-002-1617-z.

75.
Martel R, Schmidt T, Shea HR, Hertel T, Avouris P. Singleand multi-wall carbon nanotube field-effect transistors. Appl Phys Lett, 73, 2447 (1998). http://dx.doi.org/doi:http://dx.doi.org/10.1063/1.122477. crossref(new window)

76.
Kam NWS, Dai H. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc, 127, 6021 (2005). http://dx.doi.org/10.1021/ja050062v. crossref(new window)

77.
Zanello LP, Zhao B, Hu H, Haddon RC. Bone cell proliferation on carbon nanotubes. Nano Lett, 6, 562 (2006). http://dx.doi.org/10.1021/nl051861e. crossref(new window)

78.
Star A, Steuerman DW, Heath JR, Stoddart JF. Starched carbon nanotubes. Angew Chem Int Ed, 41, 2508 (2002). http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2508::AID-ANIE2508>3.0.CO;2-A. crossref(new window)

79.
Kim OK, Je J, Baldwin JW, Kooi S, Pehrsson PE, Buckley LJ. Solubilization of single-wall carbon nanotubes by supramolecular encapsulation of helical amylose. J Am Chem Soc, 125, 4426 (2003). http://dx.doi.org/10.1021/ja029233b. crossref(new window)

80.
Bandyopadhyaya R, Nativ-Roth E, Regev O, Yerushalmi-Rozen R. Stabilization of individual carbon nanotubes in aqueous solutions. Nano Lett, 2, 25 (2001). http://dx.doi.org/10.1021/nl010065f. crossref(new window)

81.
Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science, 286, 1127 (1999). http://dx.doi.org/10.1126/science.286.5442.1127. crossref(new window)

82.
Lee SM, Lee YH. Hydrogen storage in single-walled carbon nanotubes. Appl Phys Lett, 76, 2877 (2000). http://dx.doi.org/10.1063/1.126503. crossref(new window)

83.
Mu Y, Liang H, Hu J, Jiang L, Wan L. Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells. J Phys Chem B, 109, 22212 (2005). http://dx.doi.org/10.1021/jp0555448. crossref(new window)

84.
Hsin YL, Hwang KC, Yeh CT. Poly(vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells. J Am Chem Soc, 129, 9999 (2007). http://dx.doi.org/10.1021/ja072367a. crossref(new window)

85.
Esawi AMK, Farag MM. Carbon nanotube reinforced composites: potential and current challenges. Mater Design, 28, 2394 (2007). http://dx.doi.org/10.1016/j.matdes.2006.09.022. crossref(new window)

86.
Ding L, Stilwell J, Zhang T, Elboudwarej O, Jiang H, Selegue JP, Cooke PA, Gray JW, Chen FF. Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nanoonions on human skin fibroblast. Nano Lett, 5, 2448 (2005). http://dx.doi.org/10.1021/nl051748o. crossref(new window)

87.
Luo PG, Sahu S, Yang ST, Sonkar SK, Wang J, Wang H, LeCroy GE, Cao L, Sun YP. Carbon "quantum" dots for optical bioimaging. J Mater Chem B, 1, 2116 (2013). http://dx.doi.org/10.1039/C3TB00018D. crossref(new window)

88.
Salinas-Castillo A, Ariza-Avidad M, Pritz C, Camprubi-Robles M, Fernandez B, Ruedas-Rama MJ, Megia-Fernandez A, Lapresta- Fernandez A, Santoyo-Gonzalez F, Schrott-Fischer A, Capitan-Vallvey LF. Carbon dots for copper detection with down and upconversion fluorescent properties as excitation sources. Chem Commun, 49, 1103 (2013). http://dx.doi.org/10.1039/C2CC36450F. crossref(new window)

89.
Lu W, Qin X, Liu S, Chang G, Zhang Y, Luo Y, Asiri AM, Al-Youbi AO, Sun X. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal Chem, 84, 5351 (2012). http://dx.doi.org/10.1021/ac3007939. crossref(new window)

90.
Wang F, Chen YH, Liu CY, Ma DG. White light-emitting devices based on carbon dots' electroluminescence. Chem Commun, 47, 3502 (2011). http://dx.doi.org/10.1039/C0CC05391K. crossref(new window)

91.
Zhang WM, Hu JS, Guo YG, Zheng SF, Zhong LS, Song WG, Wan LJ. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv Mater, 20, 1160 (2008). http://dx.doi.org/10.1002/adma.200701364. crossref(new window)

92.
Yang R, Li H, Qiu X, Chen L. A spontaneous combustion reaction for synthesizing Pt hollow capsules using colloidal carbon spheres as templates. Chemistry, 12, 4083 (2006). http://dx.doi.org/10.1002/chem.200501474. crossref(new window)

93.
Caihong W, Chu X, Wu M. Highly sensitive gas sensors based on hollow $SnO_2$ spheres prepared by carbon sphere template method. Sens Actuators B, 120, 508 (2007). http://dx.doi.org/10.1016/j.snb.2006.03.004. crossref(new window)

94.
Chaturbedy P, Chatterjee S, Selvi RB, Bhat A, Kavitha MK, Tiwari V, Patel AB, Kundu TK, Maji TK, Eswaramoothy M. Multifunctional carbon nanospheres with magnetic and luminescent probes:probable brain theranostic agents. J Mater Chem B, 1, 939 (2013). http://dx.doi.org/10.1039/C2TB00134A. crossref(new window)

95.
Pike CM, Grabner CP, Harkins AB. Fabrication of amperometric electrodes. J Vis Exp, 27, 1040 (2009). http://dx.doi.org/10.3791/1040. crossref(new window)

96.
BMW i8 in detail. Carbon fiber explained [Internet]. Available from: http://bmwi.bimmerpost.com/forums/showthread.php?t=931027.