Advanced SearchSearch Tips
Carbon nanotubes synthesis using diffusion and premixed flame methods: a review
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 16, Issue 1,  2015, pp.1-10
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2015.16.1.001
 Title & Authors
Carbon nanotubes synthesis using diffusion and premixed flame methods: a review
Mittal, Garima; Dhand, Vivek; Rhee, Kyong Yop; Kim, Hyeon-Ju; Jung, Dong Ho;
  PDF(new window)
In recent years, flame synthesis has absorbed a great deal of attention as a combustion method for the production of metal oxide nanoparticles, carbon nanotubes, and other related carbon nanostructures, over the existing conventional methods. Flame synthesis is an energy-efficient, scalable, cost-effective, rapid and continuous process, where flame provides the necessary chemical species for the nucleation of carbon structures (feed stock or precursor) and the energy for the production of carbon nanostructures. The production yield can be optimized by altering various parameters such as fuel profile, equivalence ratio, catalyst chemistry and structure, burner configuration and residence time. In the present report, diffusion and premixed flame synthesis methods are reviewed to develop a better understanding of factors affecting the morphology, positioning, purity, uniformity and scalability for the development of carbon nanotubes along with their correlated carbonaceous derivative nanostructures.
flame synthesis;diffusion flame;premixed flame;carbon nano structures;nanotubes;
 Cited by
Mechanical and Thermal Properties of Epoxy Composites Reinforced Fluorinated Illite and Carbon Nanotube, Applied Chemistry for Engineering, 2016, 27, 3, 285  crossref(new windwow)
Karthik PS, Himaja AL, Singh SP. Carbon-allotropes: synthesis methods, applications and future perspectives. Carbon Lett, 15, 219 (2014). crossref(new window)

Watanabe K, Araidai M, Tada K. Field emission and electronic structures of carbon allotropes. Thin Solid Films, 464-465, 354 (2004). crossref(new window)

Lee JH, Marroquin J, Rhee KY, Park SJ, Hui D. Cryomilling application of graphene to improve material properties of graphene/chitosan nanocomposites. Composites B, 45, 682 (2013). http:// crossref(new window)

Yadav M, Rhee KY, Jung IH, Park SJ. Eco-friendly synthesis, characterization and properties of a sodium carboxymethyl cellulose/ graphene oxide nanocomposite film. Cellulose, 20, 687 (2013). crossref(new window)

Bae KM, Park SJ. A study on elemental mercury adsorption behaviors of nanoporous carbons with carbon dioxide activation. Carbon Lett, 15, 295 (2014). crossref(new window)

Bae KM, Kim BJ, Park SJ. Overlook of carbonaceous adsorbents and processing methods for elemental mercury removal. Carbon Lett, 15, 238 (2014). crossref(new window)

Azeez AA, Rhee KY, Park SJ, Kim HJ, Jung DH. Application of cryomilling to enhance material properties of carbon nanotube reinforced chitosan nanocomposites. Composites B, 50, 127 (2013). crossref(new window)

Sun F, Shi C, Rhee KY, Zhao N. In-situ synthesis of CNTs in Mg powder at low temperature for fabricating reinforced Mg composites. J Alloys Compd, 551, 496 (2013). crossref(new window)

Zhao Z, Gou J, Bietto S, Ibeh C, Hui D. Fire retardency of clay/carbon nanofiber hybrid sheet in fiber reinforced polymer composites. Compos Sci Technol, 69, 2081 (2009). crossref(new window)

Kim MT, Rhee KY, Lee JH, Hui D, Lau AKT. Property enhancement of a carbon fiber/epoxy composite by using carbon nanotubes. Composites B, 42, 1257 (2011). compositesb.2011.02.005. crossref(new window)

Roessler DM, Wang DSY, Kerker M. Optical absorption by randomly oriented carbon spheroids. Appl Opt, 22, 3648 (1983). crossref(new window)

Dhand V, Prasad JS, Rao MV, Bharadwaj S, Anjaneyulu Y, Jain PK. Flame synthesis of carbon nano onions using liquefied petroleum gas without catalyst. Mater Sci Eng C, 33, 758 (2013). crossref(new window)

Prato M. [60]Fullerene chemistry for materials science applications. J Mater Chem, 7, 1097 (1997). crossref(new window)

Schueller OJA, Brittain ST, Whitesides GM. Fabrication of glassy carbon microstructures by soft lithography. Sens Actuators A, 72, 125 (1999). crossref(new window)

Mittal G, Dhand V, Rhee KY, Park SJ, Le WR. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem, 21, 11 (2015). crossref(new window)

Ibrahim KS. Carbon nanotubes-properties and applications: a review. Carbon Lett, 14, 131 (2013). crossref(new window)

Kim YA, Yang KS, Muramatsu H, Hayashi T, Endo M, Terrones M, Dresselhaus MS. Double-walled carbon nanotubes: synthesis, structural characterization, and application. Carbon Lett, 15, 77 (2014). crossref(new window)

Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R. Methods for carbon nanotubes synthesis: review. J Mater Chem, 21, 15872 (2011). crossref(new window)

Iijima S. Helical microtubules of graphitic carbon. Nature, 354, 56 (1991). crossref(new window)

Park YS, Moon HS, Huh M, Kim BJ, Kuk YS, Kang SJ, Lee SH, An KH. Synthesis of aligned and length-controlled carbon nanotubes by chemical vapor deposition. Carbon Lett, 14, 99 (2013). crossref(new window)

Kumar M, Ando Y. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol, 10, 3739 (2010). crossref(new window)

Dupuis AC. The catalyst in the CCVD of carbon nanotubes: a review. Prog Mater Sci, 50, 929 (2005). crossref(new window)

Yudasaka M, Yamada R, Sensui N, Wilkins T, Ichihashi T, Iijima S. Mechanism of the effect of NiCo, Ni and Co catalysts on the yield of single-wall carbon nanotubes formed by pulsed Nd:YAG laser ablation. J Phys Chem B, 103, 6224 (1999). crossref(new window)

Sharon M, Rusop M, Soga T, Afre RA. Laser ablated carbon thin film from carbon nanotubes and their property studies. Carbon Lett, 9, 17 (2008). crossref(new window)

Charcosset C, Bernard S, Fiaty K, Bechelany M, Cornu D. Membrane techniques for the preparation of nanomaterials: nanotubes, nanowires and nanoparticles: a review. Dyn Biochem Process Biotechnol Mol Biol, 1, 15 (2007).

Merchan-Merchan W, Saveliev AV, Kennedy L, Jimenez WC. Combustion synthesis of carbon nanotubes and related nanostructures. Prog Energy Combust Sci, 36, 696 (2010). crossref(new window)

Yuan L, Saito K, Pan C, Williams FA, Gordon AS. Nanotubes from methane flames. Chem Phys Lett, 340, 237 (2001). crossref(new window)

Woo SK, Hong YT, Kwon OC. Flame synthesis of carbon nanotubes using a double-faced wall stagnation flow burner. Carbon, 47, 912 (2009). crossref(new window)

Singer JM, Grumer J. Carbon formation in very rich hydrocarbonair flames: I. Studies of chemical content, temperature, ionization and particulate matter. Symp Int Combust, 7, 559 (1958).

Njuguna J, Pielichowsky K. Polymer nanocomposites for aerospace application: fabrication. Adv Eng Mater, 6, 193 (2004). crossref(new window)

Nakazawa S, Yokomori T, Mizomoto M. Flame synthesis of carbon nanotubes in a wall stagnation flow. Chem Phys Lett, 403, 158 (2005). crossref(new window)

Okuno H, Issi JP, Charlier JC. Catalyst assisted synthesis of carbon nanotubes using the oxy-acetylene combustion flame method. Carbon, 43, 864 (2005). crossref(new window)

Cao F, Yang H, Fu Q, Pan CX. Influence of fuels and substrates on flame synthesis of one-dimensional carbon nanomaterials. New Carbon Mater, 20, 261 (2005).

Arana CP, Puri IK, Sen S. Catalyst influence on the flame synthesis of aligned carbon nanotubes and nanofibers. Proc Combust Inst, 30, 2553 (2005). crossref(new window)

Roper FG. The prediction of laminar jet diffusion flame sizes: Part I. Theoretical model. Combust Flame, 29, 219 (1977). crossref(new window)

Woo SK, Hong YT, Kwon OC. Flame-synthesis limits and selfcatalytic behavior of carbon nanotubes using a double-faced wall stagnation flow burner. Combust Flame, 156, 1983 (2009). crossref(new window)

Rao CNR, Satishkumar BC, Govindaraj A, Nath M. Nanotubes. ChemPhysChem, 2, 78 (2001).<78::AID-CPHC78>3.0.CO;2-7. crossref(new window)

Zhang XF, Yang XY, Qi WW, Yu SY. Experimental research on synthesis of carbon nanotubes. J Eng Thermophys, 27, 357 (2006).

Dhand V, Rao MV, Prasad JS, Mittal G, Rhee KY, Kim HJ, Jung DH. Carbon nanospheres synthesized via solution combustion method: their application as an anode material and catalyst for hydrogen production. Carbon Lett, 15, 198 (2014). crossref(new window)

Dhand V, Prasad JS, Rao MV, Kalluri S, Jain PK, Sreedhar B. Hydrogen adsorption in flame synthesized and lithium intercalated carbon nanofibers: a comparative study. J Nanosci Nanotechnol, 15, 742 (2015). crossref(new window)

Dhand V, Prasad JS, Rhee KY, Anjaneyulu Y. Fabrication of high pressure hydrogen adsorption/desorption unit: adsorption study on flame synthesized carbon nanofibers. J Ind Eng Chem, 19, 944 (2013). crossref(new window)

Burghard M, Klauk H, Kern K. Carbon-based field-effect transistors for nanoelectronics. Adv Mater, 21, 2586 (2009). crossref(new window)

Lau KT, Wong TT, Leng J, Hui D, Rhee KY. Property enhancement of polymer-based composites at cryogenic environment by using tailored carbon nanotubes. Composites B, 54, 41 (2013). crossref(new window)

Lim JI, Rhee KY, Kim HJ, Jung DH. Effect of stacking sequence on the flexural and fracture properties of carbon/basalt/epoxy hybrid composites. Carbon Lett, 15, 125 (2014). crossref(new window)

Kshirsagar DE, Puri V, Sharon M, Sharon M. Microwave absorption study of carbon nano materials synthesized from natural oils. Carbon Lett, 7, 245 (2006).

Kim MS, Lim SM, Song MY, Cho HJ, Choi YH, Yu JS. Acid treatments of carbon nanotubes and their application as Pt-Ru/CNT anode catalysts for proton exchange membrane fuel cell. Carbon Lett, 11, 336 (2010). crossref(new window)

Gore JP, Sane A. Flame synthesis of carbon nanotubes. In: Yellampalli S, ed. Carbon Nanotubes: Synthesis, Characterization, Applications, InTech, Chapter 7 (2011).

Saito K, Gordon AS, Williams FA, Stickle WF. A study of the early history of soot formation in various hydrocarbon diffusion flames. Combust Sci Technol, 80, 103 (1991). crossref(new window)

Yuan L, Li T, Saito K. Growth mechanism of carbon nanotubes in methane diffusion flames. Carbon, 41, 1889 (2003). crossref(new window)

Yuan L, Saito K, Hu W, Chen Z. Ethylene flame synthesis of wellaligned multi-walled carbon nanotubes. Chem Phys Lett, 346, 23 (2001). crossref(new window)

Vander Wal RL, Ticich TM, Curtis VE. Diffusion flame synthesis of single-walled carbon nanotubes. Chem Phys Lett, 323, 217 (2000). crossref(new window)

Vander Wal RL, Berger GM, Hall LJ. Single-walled carbon nanotube synthesis via a multi-stage flame configuration. J Phys Chem B, 106, 3564 (2002). crossref(new window)

Merchan-Merchan W, Saveliev A, Kennedy LA, Fridman A. Formation of carbon nanotubes in counter-flow, oxy-methane diffusion flames without catalysts. Chem Phys Lett, 354, 20 (2002). crossref(new window)

Saveliev AV, Merchan-Merchan W, Kennedy LA. Metal catalyzed synthesis of carbon nanostructures in an opposed flow methane oxygen flame. Combust Flame, 135, 27 (2003). crossref(new window)

Merchan-Merchan W, Saveliev AV, Kennedy LA. High-rate flame synthesis of vertically aligned carbon nanotubes using electric field control. Carbon, 42, 599 (2004). crossref(new window)

Merchan-Merchan W, Saveliev AV, Kennedy LA. Flame nanotube synthesis in moderate electric fields: from alignment and growth rate effects to structural variations and branching phenomena. Carbon, 44, 3308 (2006). crossref(new window)

Hu W, Yuan L, Chen Z, Gong D, Saito K. Fabrication and characterization of vertically aligned carbon nanotubes on silicon substrates using porous alumina nanotemplates. J Nanosci Nanotechnol, 2, 203 (2002). crossref(new window)

Yang X, Fang G, Liu N, Wang C, Zheng Q, Zhou H, Zhao D, Long H, Liu Y, Zhao X. Synthesis and field emission properties of carbon nanotubes grown in ethanol flame based on a photoresist-assisted catalyst annealing process. Appl Surf Sci, 255, 7905 (2009). crossref(new window)

Lee GW, Jurng J, Hwang J. Synthesis of carbon nanotubes on a catalytic metal substrate by using an ethylene inverse diffusion flame. Carbon, 42, 682 (2004). crossref(new window)

Xu F, Liu X, Tse SD. Synthesis of carbon nanotubes on metal alloy substrates with voltage bias in methane inverse diffusion flames. Carbon, 44, 570 (2006). crossref(new window)

Li TX, Zhang HG, Wang FJ, Chen Z, Saito K. Synthesis of carbon nanotubes on Ni-alloy and Si-substrates using counterflow methane: air diffusion flames. Proc Combust Inst, 31, 1849 (2007). crossref(new window)

Unrau CJ, Axelbaum RL, Biswas P, Fraundorf P. Synthesis of single- walled carbon nanotubes in oxy-fuel inverse diffusion flames with online diagnostics. Proc Combust Inst, 31, 1865 (2007). crossref(new window)

Unrau CJ, Axelbaum RL, Lo CS. High-yield growth of carbon nanotubes on composite Fe/Si/O nanoparticle catalysts: a Car-Parrinello molecular dynamics and experimental study. J Phys Chem C, 114, 10430 (2010). crossref(new window)

Camacho J, Choudhuri AR. Effects of fuel compositions on the structure and yield of flame synthesized carbon nanotubes. Fuller Nanotube Carbon Nanostruct, 15, 99 (2007). crossref(new window)

Naha S, Sen S, De AK, Puri IK. A detailed model for the flame synthesis of carbon nanotubes and nanofibers. Proc Combust Inst, 31, 1821 (2007). crossref(new window)

Manciu FS, Camacho J, Choudhuri AR. Flame synthesis of multi-walled carbon nanotubes using $CH_4-H_2$ fuel blends. Fuller Nanotube Carbon Nanostruct, 16, 231 (2008). crossref(new window)

Li TX, Kuwana K, Saito K, Zhang H, Chen Z. Temperature and carbon source effects on methane: air flame synthesis of CNTs. Proc Combust Inst, 32, 1855 (2009). crossref(new window)

Hou SS, Chung DH, Lin TH. Flame synthesis of carbon nanotubes in a rotating counterflow. J Nanosci Nanotechnol, 9, 4826 (2009). crossref(new window)

Chung DH, Lin TH. Nitrogen dilution effect on flame synthesis of carbon nanostructures with acoustic modulation. J Phys Chem C, 115, 16287 (2011). crossref(new window)

Dhand V, Prasad JS, Rao MV, Mahesh KN, Anupama L, Himabindu V, Yerramilli A, Raju VS, Sukumar AA. Design and development of flame reactor for carbon nanorods (CNRs) production. Indian J Eng Mater Sci, 14, 240 (2007).

Rao MV, Dhand V, Prasad JS, Mahesh KN, Himabindu V, Yerramilli A, Sreedhar B. In situ lithium intercalation of carbon nanorods using flame synthesis. Compos Sci Technol, 70, 255 (2010). crossref(new window)

Vander Wal RL, Hall LJ, Berger GM. Optimization of flame synthesis for carbon nanotubes using supported catalyst. J Phys Chem B, 106, 13122 (2002). crossref(new window)

Howard JB, Chowdhury KD, Vander Sande JB. Carbon shells in flames. Nature, 370, 6491 (1994).

Chowdhury KD, Howard JB, Vander Sande JB. Fullerenic nanostructures in flames. J Mater Res, 11, 341 (1996). crossref(new window)

Duan HM, McKinnon JT. Nanoclusters produced in flames. J Phys Chem, 98, 12815 (1994). crossref(new window)

Adams GB, Sankey OF, Page JB, O'Keeffe M, Drabold DA. Energetics of large fullerenes: balls, tubes, and capsules. Science, 256, 1792 (1992). crossref(new window)

Diener MD, Nichelson N, Alford JM. Synthesis of single-walled carbon nanotubes in flames. J Phys Chem B, 104, 9615 (2000). crossref(new window)

Vander Wal RL, Ticich TM, Curtis VE. Flame synthesis of metalcatalyzed single-wall carbon nanotubes. J Phys Chem A, 104, 7209 (2000). crossref(new window)

Vander Wal RL, Ticich TM. Comparative flame and furnace synthesis of single-walled carbon nanotubes. Chem Phys Lett, 336, 24 (2001). crossref(new window)

Vander Wal RL, Hall LJ. Ferrocene as a precursor reagent for metal- catalyzed carbon nanotubes: competing effects. Combust Flame, 130, 27 (2002). crossref(new window)

Vander Wal RL, Ticich TM. Flame and furnace synthesis of singlewalled and multi-walled carbon nanotubes and nanofibers. J Phys Chem B, 105, 10249 (2001).

Vander Wal RL, Ticich TM, Curtis VE. Substrate: support interactions in metal-catalyzed carbon nanofiber growth. Carbon, 39, 2277 (2001). crossref(new window)

Vander Wal RL, Hall LJ. Flame synthesis of Fe catalyzed singlewalled carbon nanotubes and Ni catalyzed nanofibers: growth mechanism and consequences. Chem Phys Lett, 349, 178 (2001). crossref(new window)

Vander Wal RL, Hall LJ, Berger GM. The chemistry of premixed flame synthesis of carbon nanotubes using supported catalysts. Proc Combust Inst, 29, 1079 (2002). crossref(new window)

Height MJ, Howard JB, Tester JW, Vander Sande JB. Flame synthesis of single-walled carbon nanotubes. Carbon, 42, 2295 (2004). crossref(new window)

Gopinath P, Gore J. Chemical kinetic considerations for postflame synthesis of carbon nanotubes in premixed flames using a support catalyst. Combust Flame, 151, 542 (2007). crossref(new window)

Height MJ, Howard JB, Tester JW, Vander Sande JB. Carbon nanotube formation and growth via particle-particle interaction. J Phys Chem B, 109, 12337 (2005). crossref(new window)

Wen JZ, Thomson MJ, Lightstone MF, Rogak SN. Detailed kinetic modeling of carbonaceous nanoparticle inception and surface growth during the pyrolysis of $C_{6}H_{6}$ behind shock waves. Energy Fuels, 20, 547 (2006). crossref(new window)

Yu XL, Yang XY, Ye P, Wang J, Yu SY. Experimental study on multi-walled carbon nanotubes synthesized by acetylene-air premixed flame. J Eng Thermophys, 30, 165 (2009).

Hall B, Zhuo C, Levendis YA, Richter H. Influence of the fuel structure on the flame synthesis of carbon nanomaterials. Carbon, 49, 3412 (2011). crossref(new window)