JOURNAL BROWSE
Search
Advanced SearchSearch Tips
An overview of new oxidation methods for polyacrylonitrile-based carbon fibers
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 16, Issue 1,  2015, pp.11-18
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2015.16.1.011
 Title & Authors
An overview of new oxidation methods for polyacrylonitrile-based carbon fibers
Shin, Hye Kyoung; Park, Mira; Kim, Hak-Yong; Park, Soo-Jin;
  PDF(new window)
 Abstract
The process of oxidizing polyacrylonitrile (PAN)-based carbon fibers converts them into an infusible and non-flammable state prior to carbonization. This represents one of the most important stages in determining the mechanical properties of the final carbon fibers, but the most commonly used methods, such as thermal treatment ( to ), tend to waste a great deal of process time, money, and energy. There is therefore a need to develop more advanced oxidation methods for PAN precursor fibers. In this review, we assess the viability of electron beam, gamma-ray, ultra-violet, and plasma treatments with a view to advancing these areas of research and their industrial application.
 Keywords
carbon fibers;polyacrylonitrile;electron beam;gamma-ray;ultra-violet;plasma;
 Language
English
 Cited by
 References
1.
Donnet JB, Bansal RC. Carbon Fibers, M. Dekker, New York, NY (1984).

2.
Fitzer E. Carbon fibres: present state and future expectations. In: Figueiredo JL, Bernardo CA, Baker RTK, Hüttinger KJ, eds. Carbon Fibers Filaments and Composites. NATO ASI Series Vol. 177, Springer, Netherlands, 3 (1990). http://dx.doi.org/10.1007/978-94-015-6847-0_1.

3.
Park SJ. Carbon Fibers, Springer, New York, NY (2015).

4.
Minus M, Kumar S. The processing, properties, and structure of carbon fibers. JOM, 57, 52 (2005). http://dx.doi.org/10.1007/s11837-005-0217-8.

5.
Chand S. Review carbon fibers for composites. J Mater Sci, 35, 1303 (2000). http://dx.doi.org/10.1023/A:1004780301489. crossref(new window)

6.
Beltz LA, Gustafson RR. Cyclization kinetics of poly(acrylonitrile). Carbon, 34, 561 (1996). http://dx.doi.org/10.1016/0008-6223(96)00005-X. crossref(new window)

7.
Fitzer E. Pan-based carbon fibers: present state and trend of the technology from the viewpoint of possibilities and limits to influence and to control the fiber properties by the process parameters. Carbon, 27, 621 (1989). http://dx.doi.org/10.1016/0008-6223(89)90197-8. crossref(new window)

8.
Serkov AT, Budnitskii GA, Radishevskii MB, Medvedev VA, Zlatoustova LA. Improving carbon fibre production technology. Fibre Chem, 35, 117 (2003). http://dx.doi.org/10.1023/A:1024838312261. crossref(new window)

9.
Perepelkin KE. Oxidized (cyclized) polyacrylonitrile fibres: oxypan. A review. Fibre Chem, 35, 409 (2003). http://dx.doi.org/10.1023/B:FICH.0000020769.42823.31. crossref(new window)

10.
Park SJ, Jang YS, Shim JW, Ryu SK. Studies on pore structures and surface functional groups of pitch-based activated carbon fibers. J Colloid Interface Sci, 260, 259 (2003). http://dx.doi.org/10.1016/S0021-9797(02)00081-4. crossref(new window)

11.
Ma X, Yuan C, Liu X. Mechanical, microstructure and surface characterizations of carbon fibers prepared from cellulose after liquefying and curing. Materials, 7, 75 (2014). http://dx.doi.org/10.3390/ma7010075.

12.
Wu Q, Pan D. A new cellulose based carbon fiber from a lyocell precursor. Text Res J, 72, 405 (2002). http://dx.doi.org/10.1177/004051750207200506. crossref(new window)

13.
Bronikowski MJ, Willis PA, Colbert DT, Smith KA, Smalley RE. Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: a parametric study. J Vac Sci Technol A, 19, 1800 (2001). http://dx.doi.org/10.1116/1.1380721. crossref(new window)

14.
Shim JW, Park SJ, Ryu SK. Effect of modification with $HNO_3$ and NaOH on metal adsorption by pitch-based activated carbon fibers. Carbon, 39, 1635 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00290-6. crossref(new window)

15.
Donnet JB, Park SJ. Surface characteristics of pitch-based carbon fibers by inverse gas chromatography method. Carbon, 29, 955 (1991). http://dx.doi.org/10.1016/0008-6223(91)90174-H. crossref(new window)

16.
Fennessey SF, Farris RJ. Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns. Polymer, 45, 4217 (2004). http://dx.doi.org/10.1016/j.polymer.2004.04.001. crossref(new window)

17.
He D, Wang C, Bai Y, Zhu B. Comparison of structure and properties among various PAN fibers for carbon fibers. J Mater Sci Technol, 21, 376 (2005).

18.
Morgan P. Carbon Fibers and Their Composites, Taylor & Francis, Boca Raton, FL (2005).

19.
Shen X, Ji Y, Wang J. Preparation and pH-sensitivity of polyacrylonitrile (PAN) based porous hollow gel fibers. J Appl Polym Sci, 110, 313 (2008). http://dx.doi.org/10.1002/app.28176. crossref(new window)

20.
Bashir Z. A critical review of the stabilisation of polyacrylonitrile. Carbon, 29, 1081 (1991). http://dx.doi.org/10.1016/0008-6223(91)90024-D. crossref(new window)

21.
Frank E, Hermanutz F, Buchmeiser MR. Carbon fibers: precursors, manufacturing, and properties. Macromol Mater Eng, 297, 493 (2012). http://dx.doi.org/10.1002/mame.201100406. crossref(new window)

22.
Ouyang Q, Cheng L, Wang H, Li K. Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile. Polym Degradation Stab, 93, 1415 (2008). http://dx.doi.org/10.1016/j.polymdegradstab.2008.05.021. crossref(new window)

23.
Ryu SK, Park BJ, Park SJ. XPS analysis of carbon fiber surfaces: anodized and interfacial effects in fiber-epoxy composites. J Colloid Interface Sci, 215, 167 (1999). http://dx.doi.org/10.1006/jcis.1999.6240. crossref(new window)

24.
Park SJ, Kim JS. Influence of plasma treatment on microstructures and acid-base surface energetics of nanostructured carbon blacks: $N_2$ plasma environment. J Colloid Interface Sci, 244, 336 (2001). http://dx.doi.org/10.1006/jcis.2001.7920. crossref(new window)

25.
Sherwood PMA. Surface analysis of carbon and carbon fibers for composites. J Electron Spectrosc Relat Phenom, 81, 319 (1996). http://dx.doi.org/10.1016/0368-2048(95)02529-4. crossref(new window)

26.
Park SJ, Kim BJ. Ammonia removal of activated carbon fibers produced by oxyfluorination. J Colloid Interface Sci, 291, 597 (2005). http://dx.doi.org/10.1016/j.jcis.2005.05.012. crossref(new window)

27.
Park SJ, Kim BJ. Influence of ozone treatment on Cr(VI) adsorption of activated carbon. Korean Chem Eng Res, 44, 644 (2006).

28.
Wang YQ, Sherwood PMA. Studies of carbon nanotubes and fluorinated nanotubes by X-ray and ultraviolet photoelectron spectroscopy. Chem Mater, 16, 5427 (2004). http://dx.doi.org/10.1021/cm040050t. crossref(new window)

29.
Dubkova VI, Rodtsevich SP, Komarevich VG, Kotov DA. Influence of ion-beam carbon-fiber surface treatment on the angle of wetting by epoxy oligomers. J Eng Phys Thermophys, 78, 519 (2005). http://dx.doi.org/10.1007/s10891-005-0089-3. crossref(new window)

30.
Park SJ, Seo MK, Kim HY, Lee DR. Studies on PAN-based carbon fibers irradiated by $Ar^+$ ion beams. J Colloid Interface Sci, 261, 393 (2003). http://dx.doi.org/10.1016/S0021-9797(03)00091-2. crossref(new window)

31.
Park SJ, Seo MK, Rhee KY. Effect of $Ar^+$ ion beam irradiation on the physicochemical characteristics of carbon fibers. Carbon, 41, 592 (2003). http://dx.doi.org/10.1016/S0008-6223(02)00395-0. crossref(new window)

32.
Park SJ, Kim KD. Influence of anodic surface treatment of activated carbon on adsorption and ion exchange properties. J Colloid Interface Sci, 218, 331 (1999). http://dx.doi.org/10.1006/jcis.1999.6387. crossref(new window)

33.
Park SJ, Jang YS. Preparation and characterization of activated carbon fibers supported with silver metal for antibacterial behavior. J Colloid Interface Sci, 261, 238 (2003). http://dx.doi.org/10.1016/s0021-9797(03)00083-3. crossref(new window)

34.
Heo GY, Hong YT, Park SJ. Preparation and characterization of nickel-coated carbon nanofibers produced from the electropsinning of polyamideimide precursor. Macromol Res, 20, 503 (2012). http://dx.doi.org/10.1007/s13233-012-0075-5. crossref(new window)

35.
Kim S, Park SJ. Effect of acid/base treatment to carbon blacks on preparation of carbon-supported platinum nanoclusters. Electrochim Acta, 52, 3013 (2007). http://dx.doi.org/10.1016/j.electacta.2006.09.060. crossref(new window)

36.
Park SJ, Seo MK, Nah C. Influence of surface characteristics of carbon blacks on cure and mechanical behaviors of rubber matrix compoundings. J Colloid Interface Sci, 291, 229 (2005). http://dx.doi.org/10.1016/j.jcis.2005.04.103. crossref(new window)

37.
Park SJ, Kim KD. Adsorption behaviors of $CO_2$ and $NH_3$ on chemically surface-treated activated carbons. J Colloid Interface Sci, 212, 186 (1999). http://dx.doi.org/10.1006/jcis.1998.6058. crossref(new window)

38.
Kim BJ, Park H, Park SJ. Toxic gas removal behaviors of porous carbons in the presence of Ag/Ni bimetallic clusters. Bull Korean Chem Soc, 29, 782 (2008). http://dx.doi.org/10.5012/bkcs.2008.29.4.782. crossref(new window)

39.
Long RQ, Yang RT. Carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc, 123, 2058 (2001). http://dx.doi.org/10.1021/ja003830l. crossref(new window)

40.
Chinthaginjala JK, Seshan K, Lefferts L. Preparation and application of carbon-nanofiber based microstructured materials as catalyst supports. Ind Eng Chem Res, 46, 3968 (2007). http://dx.doi.org/10.1021/ie061394r. crossref(new window)

41.
Park SJ, Seo MK, Lee JR, Lee DR. Studies on epoxy resins cured by cationic latent thermal catalysts: the effect of the catalysts on the thermal, rheological, and mechanical properties. J Polym Sci A, 39, 187 (2001). http://dx.doi.org/10.1002/1099-0518(20010101)39:1<187::AID-POLA210>3.0.CO;2-H. crossref(new window)

42.
Im JS, Kwon O, Kim YH, Park SJ, Lee YS. The effect of embedded vanadium catalyst on activated electrospun CFs for hydrogen storage. Microporous Mesoporous Mater, 115, 514 (2008). http://dx.doi.org/10.1016/j.micromeso.2008.02.027. crossref(new window)

43.
Park SJ, Kim BJ. Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior. Mater Sci Eng A, 408, 269 (2005). http://dx.doi.org/10.1016/j.msea.2005.08.129. crossref(new window)

44.
Park SJ, Lee EJ, Kwon SH. Influence of surface treatment of polyimide film on adhesion enhancement between polyimide and metal films. Bull Korean Chem Soc, 28, 188 (2007). http://dx.doi.org/10.5012/bkcs.2007.28.2.188. crossref(new window)

45.
Park SJ, Park BJ, Ryu SK. Electrochemical treatment on activated carbon fibers for increasing the amount and rate of Cr(VI) adsorption. Carbon, 37, 1223 (1999). http://dx.doi.org/10.1016/S0008-6223(98)00318-2. crossref(new window)

46.
Wang YQ, Zhang FQ, Sherwood PMA. X-ray photoelectron spectroscopic study of carbon fiber surfaces. 23. Interfacial interactions between polyvinyl alcohol and carbon fibers electrochemically oxidized in nitric acid solution. Chem Mater, 11, 2573 (1999). http://dx.doi.org/10.1021/cm9902772. crossref(new window)

47.
Park SJ, Park BJ. Electrochemically modified PAN carbon fibers and interfacial adhesion in epoxy-resin composites. J Mater Sci Lett, 18, 47 (1999). http://dx.doi.org/10.1023/A:1006673309571. crossref(new window)

48.
Ko TH. Characterization of PAN-based nonburning (nonflam mable) fibers. J Appl Polym Sci, 47, 707 (1993). http://dx.doi.org/10.1002/app.1993.070470414. crossref(new window)

49.
Grassie N, McGuchan R. Pyrolysis of polyacrylonitrile and related polymers: I. Thermal analysis of polyacrylonitrile. Eur Polym J, 6, 1277 (1970). http://dx.doi.org/10.1016/0014-3057(70)90046-7. crossref(new window)

50.
Grassie N, McGuchan R. Pyrolysis of polyacrylonitrile and related polymers: II. The effect of sample preparation on the thermal behaviour of polyacrylonitrile. Eur Polym J, 7, 1091 (1971). http://dx.doi.org/10.1016/0014-3057(71)90141-8. crossref(new window)

51.
Grassie N, Hay JN. Thermal coloration and insolubilization in polyacrylonitrile. J Polym Sci, 56, 189 (1962). http://dx.doi.org/10.1002/pol.1962.1205616316. crossref(new window)

52.
Yun JH, Kim BH, Yang KS, Bang YH, Kim SR, Woo HG. Process optimization for preparing high performance PAN-based carbon fibers. Bull Korean Chem Soc, 30, 2253 (2009). http://dx.doi. org/10.5012/bkcs.2009.30.10.2253. crossref(new window)

53.
Yu M, Wang C, Bai Y, Wang Y, Xu Y. Influence of precursor properties on the thermal stabilization of polyacrylonitrile fibers. Polym Bull, 57, 757 (2006). http://dx.doi.org/10.1007/s00289-006-0629-9. crossref(new window)

54.
Bansal RC, Donnet JB, Stoeckli F. Active Carbon, M. Dekker, New York, NY (1988).

55.
Cho CW, Cho D, Ko YG, Kwon OH, Kang IK. Stabilization, carbonization, and characterization of PAN precursor webs processed by electrospinning technique. Carbon Lett, 8, 313 (2007). crossref(new window)

56.
Bajaj P, Sreekumar TV, Sen K. Thermal behaviour of acrylonitrile copolymers having methacrylic and itaconic acid comonomers. Polymer, 42, 1707 (2001). http://dx.doi.org/10.1016/S0032-3861(00)00583-8. crossref(new window)

57.
Rahaman MSA, Ismail AF, Mustafa A. A review of heat treatment on polyacrylonitrile fiber. Polym Degradation Stab, 92, 1421 (2007). http://dx.doi.org/10.1016/j.polymdegradstab.2007.03.023. crossref(new window)

58.
Liu Y, Kumar S. Recent progress in fabrication, structure, and properties of carbon fibers. Polym Rev, 52, 234 (2012). http://dx.doi.org/10.1080/15583724.2012.705410. crossref(new window)

59.
Schnabel W. Polymer Degradation: Principles and Practical Applications, Hanser Publishers, Munich, Germany (1981).

60.
Parejo Calvo WA, Duarte CL, Machado LDB, Manzoli JE, Geraldo ABC, Kodama Y, Silva LGA, Pino ES, Somessari ESR, Silveira CG, Rela PR. Electron beam accelerators: trends in radiation processing technology for industrial and environmental applications in Latin America and the Caribbean. Radiat Phys Chem, 81, 1276 (2012). http://dx.doi.org/10.1016/j.radphyschem.2012.02.013. crossref(new window)

61.
International Atomic Energy Agency. Industrial electron beam processing. Consultants' Meeting on the "Preparation of the status report on low energy, self-shielded electron accelerators and of industrial scale electron/X-ray irradiators", Vienna, Austria (2008).

62.
Nishi Y, Sato H, Iwata K, Nishi Y, Iwata K. Effects of homogeneous irradiation of electron beam with low potential on adhesive strength of polymethyl methacrylate composite sheet covered with nylon-6 film. J Mater Res, 24, 3503 (2009). http://dx.doi.org/doi:10.1557/jmr.2009.0429. crossref(new window)

63.
Shin BS, Seo DK, Kim HB, Jeun JP, Kang PH. A study of the thermal and mechanical properties of electron beam irradiated HDPE/EPDM blends in the presence of triallyl cyanurate. J Ind Eng Chem, 18, 526 (2012). http://dx.doi.org/10.1016/j.jiec.2011.11.025. crossref(new window)

64.
Senna MM, Mohamed RM, Shehab-Eldin AN, El-Hamouly S. Characterization of electron beam irradiated natural rubber/modified starch composites. J Ind Eng Chem, 18, 1654 (2012). http://dx.doi.org/10.1016/j.jiec.2012.03.004. crossref(new window)

65.
Yoon HJ, Kim SE, Kwon YK, Kim EJ, Lee JC, Lee YS. Synthesis of silver nanostructures on polytetrafluoroethylene (PTFE) using electron beam irradiation for antimicrobacterial effect. J Ind Eng Chem, 18, 586 (2012). http://dx.doi.org/10.1016/j.jiec.2011.10.007. crossref(new window)

66.
Dahal P, Kim YC. Preparation and characterization of modified polypropylene by using electron beam irradiation. J Ind Eng Chem, 19, 1879 (2013). http://dx.doi.org/10.1016/j.jiec.2013.02.027. crossref(new window)

67.
Shukushima S, Hayami H, Ito T, Nishimoto S. Modification of radiation cross-linked polypropylene. Radiat Phys Chem, 60, 489 (2001). http://dx.doi.org/10.1016/S0969-806X(00)00395-9. crossref(new window)

68.
Chmielewski AG, Al-Sheikhly M, Berejka AJ, Cleland MR, Antoniak M. Recent developments in the application of electron accelerators for polymer processing. Radiat Phys Chem, 94, 147 (2014). http://dx.doi.org/10.1016/j.radphyschem.2013.06.024. crossref(new window)

69.
Kang PH, Jeon YK, Jeun JP, Shin JW, Nho YC. Effect of electron beam irradiation on polyimide film. J Ind Eng Chem, 14, 672 (2008). http://dx.doi.org/10.1016/j.jiec.2008.03.004. crossref(new window)

70.
An JC. Synthesis of the combined inter- and intra-crosslinked nanohydrogels by e-beam ionizing radiation. J Ind Eng Chem, 16, 657 (2010). http://dx.doi.org/10.1016/j.jiec.2010.05.013. crossref(new window)

71.
Miao P, Wu D, Zeng K, Xu G, Zhao Ce, Yang G. Influence of electron beam pre-irradiation on the thermal behaviors of polyacrylonitrile. Polym Degradation Stab, 95, 1665 (2010). http://dx.doi.org/10.1016/j.polymdegradstab.2010.05.028. crossref(new window)

72.
Park M, Pant B, Choi J, Park YW, Lee C, Shin HK, Park SJ, Kim HY. Facile preparation of self-assembled wool-based graphene hydrogels by electron beam irradiation. Carbon Lett, 15, 136 (2014). http://dx.doi.org/10.5714/CL.2014.15.2.136. crossref(new window)

73.
Shin HK, Pyo Jeun J, Bin Kim H, Hyun Kang P. Isolation of cellulose fibers from kenaf using electron beam. Radiat Phys Chem, 81, 936 (2012). http://dx.doi.org/10.1016/j.radphyschem.2011.10.010. crossref(new window)

74.
Park M, Shin HK, Kim BS, Pant B, Barakat NAM, Kim HY. Facile preparation of graphene induced from electron-beam irradiated graphite. Mater Lett, 105, 236 (2013). http://dx.doi.org/10.1016/j.matlet.2013.04.027. crossref(new window)

75.
Liu Y, Park M, Shin HK, Pant B, Park SJ, Kim HY. Preparation and characterization of chitosan-based nanofibers by ecofriendly electrospinning. Mater Lett, 132, 23 (2014). http://dx.doi.org/10.1016/j.matlet.2014.06.041. crossref(new window)

76.
Siraj K, Khaleeq-ur-Rahman M, Rafique MS, Nawaz T. Effect of 4MeV electron beam irradiation on carbon films. Nucl Instr Method Phys Res B, 269, 53 (2011). http://dx.doi.org/10.1016/j.nimb.2010.09.022. crossref(new window)

77.
Shin H-S, Kim YR, Han B, Makarov IE, Ponomarev AV, Pikaev AK. Application of electron beam to treatment of wastewater from papermill. Radiat Phys Chem, 65, 539 (2002). http://dx.doi.org/10.1016/S0969-806X(02)00348-1. crossref(new window)

78.
Supriya P, Sridhar KR, Ganesh S. Fungal decontamination and enhancement of shelf life of edible split beans of wild legume Canavalia maritima by the electron beam irradiation. Radiat Phys Chem, 96, 5 (2014). http://dx.doi.org/10.1016/j.radphyschem.2013.08.007. crossref(new window)

79.
Danmark S, Finne-Wistrand A, Schander K, Hakkarainen M, Arvidson K, Mustafa K, Albertsson AC. In vitro and in vivo degradation profile of aliphatic polyesters subjected to electron beam sterilization. Acta Biomater, 7, 2035 (2011). http://dx.doi.org/10.1016/j.actbio.2011.02.011. crossref(new window)

80.
Allen JT, Calhoun R, Helm J, Kruger S, Lee C, Mendonsa R, Meyer S, Pageau G, Shaffer H, Whitham K, Williams CB, Farrell JP. A fully integrated 10 MeV electron beam sterilization system. Radiat Phys Chem, 46, 457 (1995). http://dx.doi.org/10.1016/0969-806X(95)00193-2. crossref(new window)

81.
Odelius K, Plikk P, Albertsson AC. The influence of composition of porous copolyester scaffolds on reactions induced by irradiation sterilization. Biomaterials, 29, 129 (2008). http://dx.doi.org/10.1016/j.biomaterials.2007.08.046. crossref(new window)

82.
Luan S, Shi H, Yao Z, Wang J, Song Y, Yin J. Effect of electron beam irradiation sterilization on the biomedical poly (octene-coethylene)/ polypropylene films. Nucl Instr Method Phys Res B, 268, 1474 (2010). http://dx.doi.org/10.1016/j.nimb.2010.01.014. crossref(new window)

83.
Auslender VL, Bryazgin AA, Voronin LA, Polyakov VA, Grodetskiy VP, Izhboldin IK, Mirsaetov OM, Petrov AM, Obidin YT, Ponomaryov VN. Automated technological radiation installation for sterilization of medical goods. Radiat Phys Chem, 52, 459 (1998). http://dx.doi.org/10.1016/S0969-806X(98)00051-6. crossref(new window)

84.
Zhang M, Zhu R, Zhang M, Gao B, Sun D, Wang S. High-energy pulse-electron-beam-induced molecular and cellular damage in Saccharomyces cerevisiae. Res Microbiol, 164, 100 (2013). http://dx.doi.org/10.1016/j.resmic.2012.10.023. crossref(new window)

85.
Park W, Hwang MH, Kim TH, Lee MJ, Kim IS. Enhancement in characteristics of sewage sludge and anaerobic treatability by electron beam pre-treatment. Radiat Phys Chem, 78, 124 (2009). http://dx.doi.org/10.1016/j.radphyschem.2008.09.010. crossref(new window)

86.
Ribeiro MA, Sato IM, Duarte CL, Sampa MHO, Salvador VLR, Scapin MA. Application of the electron-beam treatment for Ca, Si, P, Al, Fe, Cr, Zn, Co, As, Se, Cd and Hg removal in the simulated and actual industrial effluents. Radiat Phys Chem, 71, 425 (2004). http://dx.doi.org/10.1016/j.radphyschem.2004.03.017. crossref(new window)

87.
Sampa MHO, Rela PR, Casas AL, Mori MN, Duarte CL. Treatment of industrial effluents using electron beam accelerator and adsorption with activated carbon: a comparative study. Radiat Phys Chem, 71, 459 (2004). http://dx.doi.org/10.1016/j.radphyschem.2004.03.023. crossref(new window)

88.
Duarte CL, Sampa MHO, Rela PR, Oikawa H, Cherbakian EH, Sena HC, Abe H, Sciani V. Application of electron beam irradiation combined to conventional treatment to treat industrial effluents. Radiat Phys Chem, 57, 513 (2000). http://dx.doi.org/10.1016/S0969-806X(99)00453-3. crossref(new window)

89.
Sampa MHO, Duarte CL, Rela PR, Somessari ESR, Silveira CG, Azevedo AL. Remotion of organic compounds of actual industrial effluents by electron beam irradiation. Radiat Phys Chem, 52, 365 (1998). http://dx.doi.org/10.1016/S0969-806X(98)00035-8. crossref(new window)

90.
Duarte CL, Geraldo LL, Junior OdAP, Borrely SI, Sato IM, Sampa MHdO. Treatment of effluents from petroleum production by electron beam irradiation. Radiat Phys Chem, 71, 445 (2004). http://dx.doi.org/10.1016/j.radphyschem.2004.03.021. crossref(new window)

91.
Moraes MCF, Romanelli MF, Sena HC, Pasqualini da Silva G, Sampa MHO, Borrely SI. Whole acute toxicity removal from industrial and domestic effluents treated by electron beam radiation: emphasis on anionic surfactants. Radiat Phys Chem, 71, 463 (2004). http://dx.doi.org/10.1016/j.radphyschem.2004.03.022. crossref(new window)

92.
Borrely SI, Gonçalves AA, Oikawa H, Duarte CL, Rocha FR. Electron beam accelerator for detoxification of effluents. When radiation processing can enhance the acute toxicity? Radiat Phys Chem, 71, 455 (2004). http://dx.doi.org/10.1016/j.radphyschem.2004.03.087. crossref(new window)

93.
Han B, Kyu Kim J, Kim Y, Seung Choi J, Young Jeong K. Operation of industrial-scale electron beam wastewater treatment plant. Radiat Phys Chem, 81, 1475 (2012). http://dx.doi.org/10.1016/j.radphyschem.2012.01.030. crossref(new window)

94.
Kim YH, Choi SJ, Park HJ, Lee JH. Electron beam-induced mutants of microalgae Arthrospira platensis increased antioxidant activity. J Ind Eng Chem, 20, 1834 (2014). http://dx.doi.org/10.1016/j.jiec.2013.08.039. crossref(new window)

95.
Katial RK, Grier TJ, Hazelhurst DM, Hershey J, Engler RJ. Deleterious effects of electron beam radiation on allergen extracts. J Allergy Clin Immunol, 110, 215 (2002). http://dx.doi.org/10.1067/mai.2002.126377. crossref(new window)

96.
Lim SJ, Kim TH, Lee SH, Kim JY, Kim SK. Effects of electron beam irradiation and temperature on the treatment of swine wastewater using an ion exchange biological reactor. Bioresour Technol, 137, 233 (2013). http://dx.doi.org/10.1016/j.biortech.2013.03.083. crossref(new window)

97.
Lozada-Castro JJ, Gil-Díaz M, Santos-Delgado MJ, Rubio-Barroso S, Polo-Diez LM. Effect of electron-beam irradiation on cholesterol oxide formation in different ready-to-eat foods. Innov Food Sci Emerg Technol, 12, 519 (2011). http://dx.doi.org/10.1016/j.ifset.2011.07.005. crossref(new window)

98.
Ramathilaga A, Murugesan AG. Effect of electron beam irradiation on proximate, microbiological and sensory characteristics of chyavanaprash: ayurvedic poly herbal formulation. Innov Food Sci Emerg Technol, 12, 515 (2011). http://dx.doi.org/10.1016/j.ifset.2011.06.004. crossref(new window)

99.
Rivadeneira R, Moreira R, Kim J, Castell-Perez ME. Dose mapping of complex-shaped foods using electron-beam accelerators. Food Control, 18, 1223 (2007). http://dx.doi.org/10.1016/j.foodcont.2006.07.023. crossref(new window)