JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of surface treatment of graphene nanoplatelets for improvement of thermal and electrical properties of epoxy composites
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 16, Issue 1,  2015, pp.34-40
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2015.16.1.034
 Title & Authors
Effect of surface treatment of graphene nanoplatelets for improvement of thermal and electrical properties of epoxy composites
Kim, Minjae; Kim, Yeongseon; Baeck, Sung Hyeon; Shim, Sang Eun;
  PDF(new window)
 Abstract
In this study, in order to improve the thermal and electrical properties of epoxy/graphene nanoplatelets (GNPs), surface modifications of GNPs are conducted using silane coupling agents. Three silane coupling agents, i.e. 2-(3,4-epoxycyclohexyl)-ethyltrimethoxysilane (ETMOS), 3-glycidoxypropyltriethoxysilane (GPTS), and 3-glycidoxypropyltrimethoxysilane (GPTMS), were used. Among theses, GPTMS exhibits the best modification performance for fabricating GNP-incorporated epoxy composites. The effect of the silanization is evaluated using transmission electron microscopy (TEM), scanning electron microscopy, thermogravimetric analysis, and energy dispersive X-ray spectroscopy. The electrical and thermal conductivities are characterized. The epoxy/silanized GNPs exhibits higher thermal and electrical properties than the epoxy/raw GNPs due to the improved dispersion state of the GNPs in the epoxy matrix. The TEM microphotographs and Turbiscan data demonstrate that the silane molecules grafted onto the GNP surface improve the GNP dispersion in the epoxy.
 Keywords
graphene;epoxy;composite;surface treatment;thermal conductivity;
 Language
English
 Cited by
1.
Electrochemical synthesis of nanosized hydroxyapatite/graphene composite powder,;;;;;;;;

Carbon letters, 2015. vol.16. 4, pp.233-240 crossref(new window)
2.
Structural properties of reduced graphene oxides prepared using various reducing agents,;;;;

Carbon letters, 2015. vol.16. 4, pp.255-259 crossref(new window)
1.
Structural properties of reduced graphene oxides prepared using various reducing agents, Carbon letters, 2015, 16, 4, 255  crossref(new windwow)
2.
Electrochemical synthesis of nanosized hydroxyapatite/graphene composite powder, Carbon letters, 2015, 16, 4, 233  crossref(new windwow)
3.
Phenylethynyl-terminated polyimide, exfoliated graphite nanoplatelets, and the composites: an overview, Carbon letters, 2016, 19, 1  crossref(new windwow)
 References
1.
Zheng C, Fan Z, Wei T, Luo G. Temperature dependence of the conductivity behavior of graphite nanoplatelet-filled epoxy resin composites. J Appl Polym Sci, 113, 1515 (2009). http://dx.doi.org/10.1002/app.30009. crossref(new window)

2.
Zhu J, Peng H, Rodriguez-Macias F, Margrave JL, Khabashesku VN, Imam AM, Lozano K, Barrera EV. Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes. Adv Funct Mater, 14, 643 (2004). http://dx.doi.org/10.1002/adfm.200305162. crossref(new window)

3.
Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer, 40, 5967 (1999). http://dx.doi.org/10.1016/S0032-3861(99)00166-4. crossref(new window)

4.
Fox RT, Wani V, Howard KE, Bogle A, Kempel L. Conductive polymer composite materials and their utility in electromagnetic shielding applications. J Appl Polym Sci, 107, 2558 (2008). http://dx.doi.org/10.1002/app.27317. crossref(new window)

5.
Moisala A, Li Q, Kinloch IA, Windle AH. Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites. Compos Sci Technol, 66, 1285 (2006). http://dx.doi.org/10.1016/j.compscitech.2005.10.016. crossref(new window)

6.
Pumera M, Merkoci A, Alegret S. Carbon nanotube-epoxy composites for electrochemical sensing. Sens Actuators B, 113, 617 (2006). http://dx.doi.org/10.1016/j.snb.2005.07.010. crossref(new window)

7.
Yu A, Ramesh P, Sun X, Bekyarova E, Itkis ME, Haddon RC. Enhanced thermal conductivity in a hybrid graphite nanoplatelet: carbon nanotube filler for epoxy composites. Adv Mater, 20, 4740 (2008). http://dx.doi.org/10.1002/adma.200800401. crossref(new window)

8.
Hindermann-Bischoff M, Ehrburger-Dolle F. Electrical conductivity of carbon black-polyethylene composites: experimental evidence of the change of cluster connectivity in the PTC effect. Carbon, 39, 375 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00130-5. crossref(new window)

9.
Wang S, Tambraparni M, Qiu J, Tipton J, Dean D. Thermal expansion of graphene composites. Macromolecules, 42, 5251 (2009). http://dx.doi.org/10.1021/ma900631c. crossref(new window)

10.
Ghosh G, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, Bao W, Miao F, Lau CN. Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett, 92, 151911 (2008). http://dx.doi.org/10.1063/1.2907977. crossref(new window)

11.
Xie SH, Liu YY, Li JY. Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes. Appl Phys Lett, 92, 243121 (2008). http://dx.doi.org/10.1063/1.2949074. crossref(new window)

12.
Yu A, Ramesh P, Itkis ME, Bekyarova E, Haddon RC. Graphite nanoplatelet: epoxy composite thermal interface materials. J Phys Chem C, 111, 7565 (2007). http://dx.doi.org/10.1021/jp071761s. crossref(new window)

13.
Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE. Carbon nanotube composites for thermal management. Appl Phys Lett, 80, 2767 (2002). http://dx.doi.org/10.1063/1.1469696. crossref(new window)

14.
Putnam SA, Cahill DG, Ash BJ, Schadler LS. High-precision thermal conductivity measurements as a probe of polymer/nanoparticle interfaces. J Appl Phys, 94, 6785 (2003). http://dx.doi.org/10.1063/1.1619202. crossref(new window)

15.
Ma PC, Kim JK, Tang BZ. Functionalization of carbon nanotubes using a silane coupling agent. Carbon, 44, 3232 (2006). crossref(new window)

16.
Ganguli S, Roy AK, Anderson DP. Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon, 46, 806 (2008). http://dx.doi.org/10.1016/j.carbon.2008.02.008. crossref(new window)

17.
Park OK, Jeevananda T, Kim NH, Kim SI, Lee JH. Effects of surface modification on the dispersion and electrical conductivity of carbon nanotube/polyaniline composites. Scripta Mater, 60, 551 (2009). http://dx.doi.org/10.1016/j.scriptamat.2008.12.005. crossref(new window)

18.
Zhao W, Song C, Pehrsson PE. Water-soluble and optically pH-sensitive single-walled carbon nanotubes from surface modification. J Am Chem Soc, 124, 12418 (2002). http://dx.doi.org/10.1021/ja027861n. crossref(new window)

19.
Kim JA, Seong DG, Kang TJ, Youn JR. Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon, 44, 1898 (2006). http://dx.doi.org/10.1016/j.carbon.2006.02.026. crossref(new window)

20.
Vast L, Philippin G, Destree A, Moreau N, Fonseca A, Nagy JB, Delhalle J, Mekhalif Z. Chemical functionalization by a fluorinated trichlorosilane of multi-walled carbon nanotubes. Nanotechnology, 15, 781 (2004). http://dx.doi.org/10.1088/0957-4484/15/7/011. crossref(new window)

21.
Deng Y, Deng C, Yang D, Wang C, Fu S, Zhang X. Preparation, characterization and application of magnetic silica nanoparticle functionalized multi-walled carbon nanotubes. Chem Commun, 5548 (2005). http://dx.doi.org/10.1039/B511683J.http://dx.doi.org/10.1016/j.carbon.2006.06.032.

22.
Ma PC, Kim JK, Tang BZ. Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Compos Sci Technol, 67, 2965 (2007). http://dx.doi.org/10.1016/j.compscitech.2007.05.006. crossref(new window)

23.
Sim LC, Ramanan SR, Ismail H, Seetharamu KN, Goh TJ. Thermal characterization of $Al_2O_3$ and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochim Acta, 430, 155 (2005). http://dx.doi.org/10.1016/j.tca.2004.12.024. crossref(new window)

24.
Liu CH, Huang H, Wu Y, Fan SS. Thermal conductivity improvement of silicone elastomer with carbon nanotube loading. Appl Phys Lett, 84, 4248 (2004). http://dx.doi.org/10.1063/1.1756680. crossref(new window)

25.
Tanaka S, Chao Y, Araki S, Miyake Y. Pervaporation characteristics of pore-filling PDMS/PMHS membranes for recovery of ethylacetate from aqueous solution. J Membr Sci, 348, 383 (2010). http://dx.doi.org/10.1016/j.memsci.2009.11.033. crossref(new window)

26.
Lee MY, Park WH, Lenz RW. Hydrophilic bacterial polyesters modified with pendant hydroxyl groups. Polymer, 41, 1703 (2000). http://dx.doi.org/10.1016/S0032-3861(99)00347-X. crossref(new window)

27.
Dhawade P, Jagtap R. Comparative study of physical and thermal properties of chitosan-silica hybrid coatings prepared by sol-gel method. Der Chem Sin, 3, 589 (2012).