Advanced SearchSearch Tips
Functionalization of graphene nanoplatelets using sugar azide for graphene/epoxy nanocomposites
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 16, Issue 2,  2015, pp.101-106
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2015.16.2.101
 Title & Authors
Functionalization of graphene nanoplatelets using sugar azide for graphene/epoxy nanocomposites
Bose, Saswata; Drzal, Lawrence T.;
  PDF(new window)
We report a covalent functionalization of graphene nanoparticles (GnPs) employing 2,3,4-Tri-O-acetyl--D-xylopyranosyl azide followed by fabrication of an epoxy/functionalized graphene nanocomposite and an evaluation of its thermo-mechanical performance. Successful functionalization of GnP was confirmed via thermal and spectroscopic study. Raman spectroscopy indicated that the functionalization was on the edge of the graphene sheets; the basal plane was not perturbed as a result of the functionalization. The epoxy/functionalized GnP composite system exhibited an increase in flexural modulus (~18%) and glass transition temperature () compared to an un-functionalized GnP based epoxy composite.
graphene nanoparticles;sugar azide;nanocomposite;spectroscopy;thermomechanical property;
 Cited by
Electrochemical synthesis of nanosized hydroxyapatite/graphene composite powder,;;;;;;;;

Carbon letters, 2015. vol.16. 4, pp.233-240 crossref(new window)
Electrochemical synthesis of nanosized hydroxyapatite/graphene composite powder, Carbon letters, 2015, 16, 4, 233  crossref(new windwow)
Flexural properties, interlaminar shear strength and morphology of phenolic matrix composites reinforced with xGnP-coated carbon fibers, Carbon letters, 2016, 17, 1, 33  crossref(new windwow)
Phenylethynyl-terminated polyimide, exfoliated graphite nanoplatelets, and the composites: an overview, Carbon letters, 2016, 19, 1  crossref(new windwow)
Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater, 20, 4490 (2008). crossref(new window)

Geim AK, Novoselov KS. The rise of graphene. Nat Mater, 6, 183 (2007). crossref(new window)

Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J. Facile synthesis and characterization of graphene nanosheets. J Phys Chem C, 112, 8192 (2008). crossref(new window)

Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385 (2008). crossref(new window)

Chen H, Muller MB, Gilmore KJ, Wallace GG, Li D. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater, 20, 3557 (2008). crossref(new window)

Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Graphenebased composite materials. Nature, 442, 282 (2006). crossref(new window)

Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Nano Lett, 8, 902 (2008). crossref(new window)

Gomez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett, 7, 3499 (2007). crossref(new window)

Zhang Y, Tang TT, Girit C, Hao Z, Martin MC, Zettl A, Crommie MF, Shen YR, Wang F. Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 459, 820 (2009). crossref(new window)

Li D, Muller MB, Gilje S, Kaner RB, Wallace CG. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol, 3, 101 (2008). crossref(new window)

Si Y, Samulski ET. Synthesis of water soluble graphene. Nano Lett, 8, 1679 (2008). crossref(new window)

Bai H, Xu Y, Zhao L, Li C, Shi G. Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem Commun, 13, 1667 (2009).

Bose S, Kuila T, Mishra AK, Kim NH, Lee JH. Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method. J Mater Chem, 22, 9696 (2012). crossref(new window)

Zhou X, Zhang J, Wu H, Yang H, Zhang J, Guo S. Reducing graphene oxide via hydroxylamine: a simple and efficient route to graphene. J Phys Chem C, 115, 11957 (2011). crossref(new window)

Lin Z, Yao Y, Li Z, Liu Y, Li Z, Wong CP. Solvent-assisted thermal reduction of graphite oxide. J Phys Chem C, 114, 14819 (2010). crossref(new window)

Kudin KN, Ozbas B, Schniepp HC, Prud'homme RK, Aksay IA, Car R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett, 8, 36 (2008). crossref(new window)

Cancado LG, Pimenta MA, Neves BRA, Dantas MSS, Jorio A. Influence of the atomic structure on the Raman spectra of graphite edges. Phys Rev Lett, 93, 247401 (2004). crossref(new window)

Ferrari AC. Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun, 143, 47 (2007). crossref(new window)

Bose S, Kim NH, Kuila T, Lau KT, Lee JH. Electrochemical performance of a graphene-polypyrrole nanocomposite as a supercapacitor electrode. Nanotechnology, 22, 295202 (2011). crossref(new window)

Leinonen H, Pettersson M, Lajunen M, Water-soluble carbon nanotubes through sugar azide functionalization. Carbon, 49, 1299 (2011). crossref(new window)