JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Bulk graphite: materials and manufacturing process
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 16, Issue 3,  2015, pp.135-146
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2015.16.3.135
 Title & Authors
Bulk graphite: materials and manufacturing process
Lee, Sang-Min; Kang, Dong-Su; Roh, Jea-Seung;
  PDF(new window)
 Abstract
Graphite can be classified into natural graphite from mines and artificial graphite. Due to its outstanding properties such as light weight, thermal resistance, electrical conductivity, thermal conductivity, chemical stability, and high-temperature strength, artificial graphite is used across various industries in powder form and bulk form. Artificial graphite of powder form is usually used as anode materials for secondary cells, while artificial graphite of bulk form is used in steelmaking electrode bars, nuclear reactor moderators, silicon ingots for semiconductors, and manufacturing equipment. This study defines artificial graphite as bulk graphite, and provides an overview of bulk graphite manufacturing, including isotropic and anisotropic materials, molding methods, and heat treatment.
 Keywords
artificial graphite;bulk graphite;materials;molding;heat treatment;manufacturing;
 Language
English
 Cited by
1.
Preparation and characterization of graphite foams,;;;

Journal of Industrial and Engineering Chemistry, 2015. vol.32. pp.21-33 crossref(new window)
1.
Preparation and characterization of graphite foams, Journal of Industrial and Engineering Chemistry, 2015, 32, 21  crossref(new windwow)
 References
1.
Bohnet M. Carbon. In: Bohnet M, ed. Ullmann's Encyclopedia of Industrial Chemistry. 6th ed., Wiley-VCH, Weinheim, Germany, 281 (2003).

2.
Kalyoncu RS. Graphite. In: U.S. Department of the Interior , U.S. Geological Survey, eds. US Geological Survey Minerals Yearbook, Vol. 1, Metals and Minerals, U.S. Geological Survey, Washington, DC (2000).

3.
Lee CZ, Ryu CR, Cho JO. The international comparative study on the origin of the terms of mineral and rock. J Korean Earth Sci Soci, 32, 306. http://dx.doi.org/10.5467/JKESS.2011.32.3.306. crossref(new window)

4.
Tamashausky AV. Graphite: a multifunctional additive for paint and coatings (2003). Available from: http://asbury.com/pdf/CoatingsPaper.pdf.

5.
Pierson HO. Handbook of Carbon, Graphite, Diamond, and Fullerenes: Properties, Processing, and Applications, Noyes Publications, Park Ridge, NJ (1993).

6.
Terrones M, Botello-Méndez AR, Campos-Delgado J, López-Urías F, Vega-Cantú YI, Rodríguez-Macías FJ, Elías AL, Muñoz-Sandoval E, Cano-Márquez AG, Charlier J-C, Terrones H. Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today, 5, 351 (2010). http://dx.doi.org/10.1016/j.nantod.2010.06.010. crossref(new window)

7.
Bernal JD. The structure of graphite. Proc Royal Soc Lond A, 106, 749 (1924). http://dx.doi.org/10.1098/rspa.1924.0101. crossref(new window)

8.
Chung DDL. Review graphite. J Mater Sci, 37, 1475 (2002). http://dx.doi.org/10.1023/A:1014915307738. crossref(new window)

9.
Rhim YR. The Structural and Property Evolution of Cellulose During Carbonization [PhD Thesis], Johns Hopkins University, Baltimore, MD (2009).

10.
Inagaki M. New Carbons: Control of Structure and Functions. 1st ed., Elsevier Science, New York, NY (2000).

11.
Delhaes P. Polymorphism of carbon. In: Delhaes P, ed. Graphite and Precursors, Gordon & Breach, Amsterdam, 1 (2001).

12.
Ren Z, Lan Y, Wang Y. Aligned Carbon Nanotubes: Physics, Concepts, Fabrication and Devices, Springer Verlag, Heidelberg (2013).

13.
Franklin RE. The structure of graphitic carbons. Acta Crystallogr, 4, 253 (1951). http://dx.doi.org/10.1107/S0365110X51000842. crossref(new window)

14.
Houska CR, Warren BE. X-ray study of the graphitization of carbon black. J Appl Phys, 25, 1503 (1954). http://dx.doi.org/10.1063/1.1702373. crossref(new window)

15.
Oberlin A. High-resolution TEM studies of carbonization and graphitization. In: Thrower PA, ed. Chemistry and Physics of Carbon, Vol. 22, Marcel Dekker, New York, NY, 1 (1989).

16.
Dobb MG, Guo H, Johnson DJ, Par CR. Structure-compressional property relations in carbon fibres. Carbon, 33, 1553 (1995). http://dx.doi.org/10.1016/0008-6223(95)00114-S. crossref(new window)

17.
Wissler M. Graphite and carbon powders for electrochemical applications. J Power Sources, 156, 142 (2006). http://dx.doi.org/10.1016/j.jpowsour.2006.02.064. crossref(new window)

18.
Wilhelm HA, Croset B, Medjahdi G. Proportion and dispersion of rhombohedral sequences in the hexagonal structure of graphite powders. Carbon, 45, 2356 (2007). http://dx.doi.org/10.1016/j.carbon.2007.07.010. crossref(new window)

19.
Toyo Tanso Co., Ltd. Carbon-graphite composite product catalogue. Available from: http://www.toyotanso.co.jp/.

20.
Cho KY, Kim KJ, Lim YS, Chung YJ, Chi SH. Specimen geometry effects on oxidation behavior of nuclear graphite. Carbon Lett, 7, 196 (2006).

21.
Xiaowei L, Jean-Charles R, Suyuan Y. Effect of temperature on graphite oxidation behavior. Nucl Eng Des, 227, 273 (2004). http://dx.doi.org/10.1016/j.nucengdes.2003.11.004. crossref(new window)

22.
Fan CL, He H, Zhang KH, Han SC. Structural developments of artificial graphite scraps in further graphitization and its relationships with discharge capacity. Electrochim Acta, 75, 311 (2012). http://dx.doi.org/10.1016/j.electacta.2012.05.010. crossref(new window)

23.
Parker SP. McGraw-Hill Encyclopedia of Chemistry. 2nd ed., McGraw-Hill, New York, NY, 455 (1993).

24.
Castner HY. Electrolytic apparatus. GB Patent 19,089 (1893).

25.
Acheson EG. Manufacture of graphite. US Patent 568,323 (1896).

26.
Wen KY, Marrow TJ, Marsden BJ. The microstructure of nuclear graphite binders. Carbon, 46, 62 (2008). http://dx.doi.org/10.1016/j.carbon.2007.10.025. crossref(new window)

27.
Considine GD. Van Nostrand's Encyclopedia of Chemistry. 5th ed., Wiley-Interscience, Hoboken, NJ (2005).

28.
Cunningham N, Lefèvre M, Dodelet JP, Thomas Y, Pelletier S. Structural and mechanical characterization of as-compacted powder mixtures of graphite and phenolic resin. Carbon, 43, 3054 (2005). http://dx.doi.org/10.1016/j.carbon.2005.06.045. crossref(new window)

29.
Choi WK, Kim BJ, Chi SH, Park SJ. Nuclear graphites (I): oxidation behaviors. Carbon Lett, 10, 239 (2009). http://dx.doi.org/10.5714/CL.2009.10.3.239. crossref(new window)

30.
Lee SM, Kang DS, Kim WS, Roh JS. Fabrication of isotropic bulk graphite using artificial graphite scrap. Carbon Lett, 15, 142 (2014). http://dx.doi.org/10.5714/CL.2014.15.2.142. crossref(new window)

31.
Oh JK, Lee SW, Park KW. Preparation of isotropic carbon with high density. J Korean Ceram Soc, 28, 908 (1991).

32.
Carlson RK, Ferritto JJ. Manufacture of high density, high strength isotropic graphite. US Patent 4,226,900 (1980).

33.
Albers TL, Miller DJ, Jones A. The characterization of highly crystalline, isotropic graphite. Proceedings of the American Carbon Society, Seattle, WA, D021 (2007).

34.
Oh JK, Park KW, Korea Institute of Science and Technology. A Study on Utilization of Graphite as Material of High Quality Products, Ministry of Science and Technology, Gwacheon (1992).

35.
Inagaki M. Applications of polycrystalline graphite. In: Delhaes P, ed. Graphite and Precursors, Gordon & Breach, Amsterdam, 179 (2001).

36.
Hove JE, Riley WC. Graphite. In: Hove JE, Riley WC, eds. Ceramics for Advanced Technologies, Wiley, New York, NY, Chapter 2 (1965).

37.
Mrozowski SW, Phillips LW. Proceedings of the First and Second Conferences on Carbon: Held at the University of Buffalo, Buffalo, New York, 1953 & 1955, University of Buffalo, Buffalo, NY (1956).

38.
Lewis IC. Baked and graphitized carbon. In: Kirk RE, Othmer DF, eds. Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 4, Bearing Materials to Carbon. 4th ed., John Wiley & Sons, New York, NY, 953 (1992).

39.
Wolf R. Manufacture of bulk carbon and grapidte materials. In: Rand B, Appleyard SP, Yardim MF, eds. Design and Control of Structure of Advanced Carbon Materials for Enhanced Performance, Vol. 374, Springer Netherlands, 217 (2001). http://dx.doi.org/10.1007/978-94-010-1013-9_12. crossref(new window)

40.
Irving DR, Blankenbaker EV. Graphite. In: Bureau of Mines, ed. Minerals Yearbook Metals and Minerals (Except Fuels) 1954, Vol. 1, United States Government Printing Office, Washington, DC, 523 (1958).

41.
Marrett R, Stadelhofer JW, Marsh H. Die Verkokung von flüssigen Kohlenwasserstoffen zur Herstellung von Kohlenstoff-Produkten. Chem Ing Tech, 55, 1 (1983). http://dx.doi.org/10.1002/cite.330550102. crossref(new window)

42.
Bloomer WJ. Production of needle coke from coal for pitch. US Patent 3,617,515 (1971).

43.
Echterhoff H, Heinze G. Verfahren zur Herstellung von Koksen fuer die Kunstkohlenindustrie. DE Patent 958,278 (1957).

44.
Wilkening S. Qualitätsentwicklung und Marktsituation von Petrolkoks für die Aluminiumgewinnung Mitteilung aus dem Leichtmetall-Forschungsinstitut der Vereinigte. Erzmetall, 29, 255 (1976).

45.
Romey I, Glaser H, Marrett R, Tillmanns H. Herstellung von Nadelkoks aus Steinkohlen-teerpech für Elektrographit. Erdöl und Kohle, Erdgas, Petrochemie, 36, 562 (1983).

46.
Kimber GM, Brown A, Kirk JN. Carbon '80. Proceedings of the 3rd International Carbon Conference, Baden Baden, Germany, 443 (1980).

47.
Mackles L, Heindl RA, Mong LE. Chemical analyses, surface area, and thermal reactions of natural graphite, and refractoriness of the ashes. J Am Ceram Soc, 36, 266 (1953). http://dx.doi.org/10.1111/j.1151-2916.1953.tb12880.x. crossref(new window)

48.
Codd LW. Natural graphite. In: Codd LW, Materials and Technology, Vol. 2, Non-Metallic Ores, Silicate Industries and Solid Mineral Fuels, Longman, London, Chapter 7 (1971).

49.
Akezuma M, Okuzawa K, Esumi K, Meguro K, Honda H. Physicochemical properties of quinoline-soluble and quinolineinsoluble mesophases. Carbon, 25, 517 (1987). http://dx.doi.org/10.1016/0008-6223(87)90192-8. crossref(new window)

50.
Bourrat X, Roche EJ, Lavin JG. Structure of mesophase pitch fibers. Carbon, 28, 435 (1990). http://dx.doi.org/10.1016/0008-6223(90)90017-S. crossref(new window)

51.
Shiraishi M, Terriere G, Oberlin A. Electron microscopic study on graphitization of bulk mesophases. J Mater Sci, 13, 702 (1978). http://dx.doi.org/10.1007/BF00570504. crossref(new window)

52.
Mochida I, Toshima H, Korai Y, Hino T. Oxygen distribution in the mesophase pitch fibre after oxidative stabilization. J Mater Sci, 24, 389 (1989). http://dx.doi.org/10.1007/BF01107416. crossref(new window)

53.
Ōtani S. On the carbon fiber from the molten pyrolysis products. Carbon, 3, 31 (1965). http://dx.doi.org/10.1016/0008-6223(65)90024-2. crossref(new window)

54.
Hüttinger KJ, Ji Ping W. Kinetics of mesophase formation in a stirred tank reactor and properties of the products. II. Discontinuous reactor. Carbon, 30, 1 (1992). http://dx.doi.org/10.1016/0008-6223(92)90099-I. crossref(new window)

55.
Azami K, Yamamoto S, Sanada Y. Kinetics of mesophase formation of petroleum pitch. Carbon, 32, 947 (1994). http://dx.doi.org/10.1016/0008-6223(94)90054-X. crossref(new window)

56.
Köchling KH, McEnaney B, Müller S, Fitzer E. International committee for characterization and terminology of carbon “first publication of 14 further tentative definitions,” Carbon, 23, 601 (1985). http://dx.doi.org/10.1016/0008-6223(85)90100-9. crossref(new window)

57.
Honda H. Carbonaceous mesophase: history and prospects. Carbon, 26, 139 (1988). http://dx.doi.org/10.1016/0008-6223(88)90030-9. crossref(new window)

58.
Chae JH, Kim KJ, Cho KY, Choi JY. The carbonization behaviors of coal tar pitch for mechanical seal. Carbon Lett, 2, 182 (2001).

59.
Laušević Z, Marinković S. Mechanical properties and chemistry of carbonization of Phenol formaldehyde resin. Carbon, 24, 575 (1986). http://dx.doi.org/10.1016/0008-6223(86)90148-X. crossref(new window)

60.
Yamashita Y, Ōuchi K. A study on carbonization of phenol-formaldehyde resin labelled with deuterium and 13C. Carbon, 19, 89 (1981). http://dx.doi.org/10.1016/0008-6223(81)90112-3. crossref(new window)

61.
Lum R, Wilkins CW, Robbins M, Lyons AM, Jones RP. Thermal analysis of graphite and carbon-phenolic composites by pyrolysis-mass spectrometry. Carbon, 21, 111 (1983). http://dx.doi.org/10.1016/0008-6223(83)90165-3. crossref(new window)

62.
Knop A, Scheib W. Chemistry and Application of Phenolic Resins, Springer-Verlag, Heidelberg (1979).

63.
Magampa PP, Manyala N, Focke WW. Properties of graphite composites based on natural and synthetic graphite powders and a phenolic novolac binder. J Nucl Mater, 436, 76 (2013). http://dx.doi.org/10.1016/j.jnucmat.2013.01.315. crossref(new window)

64.
Juel LH, Shea Jr FL. Production of shaped carbon articles. US Patent 2,500,209 (1950).

65.
Sato Y, Kitano T, Inagaki M, Sakai M. Viscous flow of carbon black dispersed pitches: The dependence on temperature and carbon black concentration. Carbon, 28, 143 (1990). http://dx.doi.org/10.1016/0008-6223(90)90105-8. crossref(new window)

66.
Jones BF, Wright MG. An observation concerning the pore structure of extruded graphite. Carbon, 8, 689 (1970). http://dx.doi.org/10.1016/0008-6223(70)90062-X. crossref(new window)

67.
Juel LH. Method and apparatus for controlling orientation of needle-like carbon particles in extruded carbon stock. US Patent 3,676,535 (1972).

68.
Turk DL. Processing of baked and graphitized carbon. In: Kirk RE, Othmer DF, eds. Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 4, Bearing Materials to Carbon. 4th ed., John Wiley & Sons, New York, NY, 960 (1992).

69.
Rhee DR. Ununterbrochen arbeitende Kolbenstrangpresse fuer bildsame Massen. Patent DE 632,410 (1936).

70.
Bowen EA, Burden RF, Shesler EG. Auger extrusion for furnace electrodes. US Patent 3,196,486 (1965).

71.
SGL Group, The Carbon Company. Carbon electrodes: performance products for non-ferrous arc furnace applications. Available from: http://www.sglgroup.com/cms/_common/downloads/products/product-groups/gce/carbon-electrodes/Carbon_Electrodes_e.pdf.

72.
SGL Group, The Carbon Company. Ultra-high-performance graphite electrodes. Available from: http://www.sglgroup.com/cms/_common/downloads/products/product-groups/gce/graphite-electrodes/Graphite_electrodes_e.pdf.

73.
Nuklear-Chemie und- Metallurgie GmbH (NUKEM). A process for the production of spherical fuel elements comprising graphite. GB Patent 1,137,013 (1967).

74.
Oberlin A. Carbonization and graphitization. Carbon, 22, 521 (1984). http://dx.doi.org/10.1016/0008-6223(84)90086-1. crossref(new window)

75.
Charette A, Kocaefe D, Saint-Romain JL, Couderc P. Comparison of various pitches for impregnation in carbon electrodes. Carbon, 29, 1015 (1991). http://dx.doi.org/10.1016/0008-6223(91)90181-H. crossref(new window)

76.
Youm HN, Kim KJ, Lee JM, Chung YJ. Effects of impregnation on the manufacture of high density carbon materials. J Korean Ceram Soc, 30, 852 (1993).

77.
Menéndez R, Bermejo J, Figueeiras A. Tar and pitch: composition and application. In: Marsh H, Rodríguez-Reinoso F, eds. Sciences of Carbon Materials, Universidad de Alicante, Alicante, Spain, 173 (2000).

78.
Jeitner IF, Nedopil IE. Verfahren zur Herstellung von Kohle- und Graphitformkoerpern. DE Patent 969,619 (1958).

79.
Peter O. Verfahren zur Herstellung von Kohleelektroden=A process for preparing carbon electrodes. DE Patent 900,569 (1953).

80.
Mantell CL. Carbon and Graphite Handbook, Interscience Publishers, New York, NY (1968).

81.
Fitzer E. The future of carbon-carbon composites. Carbon, 25, 163 (1987). http://dx.doi.org/10.1016/0008-6223(87)90116-3. crossref(new window)

82.
Kawamura K, Bragg RH. Graphitization of pitch coke: changes in mean interlayer spacing, strain and weight. Carbon, 24, 301 (1986). http://dx.doi.org/10.1016/0008-6223(86)90231-9. crossref(new window)

83.
Eatherly WP, Piper EL. Manufacture. In: Nightingale RE, ed. Nuclear Graphite, Academic Press, New York, NY, 21 (1962).