JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effects of cross-linking methods for polyethylene-based carbon fibers: review
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 16, Issue 3,  2015, pp.147-170
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2015.16.3.147
 Title & Authors
Effects of cross-linking methods for polyethylene-based carbon fibers: review
Kim, Kwan-Woo; Lee, Hye-Min; An, Jeong-Hun; Kim, Byoung-Suhk; Min, Byung-Gak; Kang, Shin-Jae; An, Kay-Hyeok; Kim, Byung-Joo;
  PDF(new window)
 Abstract
In recent decades, there has been an increasing interest in the use of carbon fiber reinforced plastic (CFRP) in aerospace, renewable energy and other industries, due to its low weight and relatively good mechanical properties compared with traditional metals. However, due to the high cost of petroleum-based precursors and their associated processing costs, CF remains a specialty product and as such has been limited to use in high-end aerospace, sporting goods, automotive, and specialist industrial applications. The high cost of CF is a problem in various applications and the use of CFRP has been impeded by the high cost of CF in various applications. This paper presents an overview of research related to the fabrication of low cost CF using polyethylene (PE) control technology, and identifies areas requiring additional research and development. It critically reviews the results of cross-linked PE control technology studies, and the development of promising control technologies, including acid, peroxide, radiation and silane cross-linking methods.
 Keywords
polyethylene;cross-linked;low cost carbon fiber;
 Language
English
 Cited by
1.
Mechanical interfacial adhesion of carbon fibers-reinforced polarized-polypropylene matrix composites: effects of silane coupling agents, Carbon letters, 2016, 17, 1, 79  crossref(new windwow)
2.
Significant reduction in stabilization temperature and improved mechanical/electrical properties of pitch-based carbon fibers by electron beam irradiation, Journal of Industrial and Engineering Chemistry, 2016, 37, 277  crossref(new windwow)
 References
1.
Fitzer E. Pan-based carbon fibers: present state and trend of the technology from the viewpoint of possibilities and limits to influence and to control the fiber properties by the process parameters. Carbon, 27, 621 (1989). http://dx.doi.org/10.1016/0008-6223(89)90197-8. crossref(new window)

2.
Park SJ, Kim BJ. Carbon fibers and their composites. Carbon Fibers: Springer Series in Materials Science, Vol. 210, Springer Netherlands, 275 (2015). http://dx.doi.org/10.1007/978-94-017-9478-7_8. crossref(new window)

3.
Kim SY, Kim SY, Lee S, Jo S, Im YH, Lee HS. Microwave plasma carbonization for the fabrication of polyacrylonitrile-based carbon fiber. Polymer, 56, 590 (2015). http://dx.doi.org/10.1016/j.polymer.2014.11.034. crossref(new window)

4.
Rahaman MSA, Ismail AF, Mustafa A. A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stab, 92, 1421 (2007). http://dx.doi.org/10.1016/j.polymdegradstab.2007.03.023. crossref(new window)

5.
Jo SM, Jang SY. Low cost carbon fiber. Polym Sci Technol, 21, 141 (2010).

6.
Frank E, Hermanutz F, Buchmeiser MR. Carbon fibers: precursors, manufacturing, and properties. Macromol Mater Eng, 297, 493 (2012). http://dx.doi.org/10.1002/mame.201100406. crossref(new window)

7.
Frank E, Steudle LM, Ingildeev D, Spörl JM, Buchmeiser MR. Carbon fibers: precursor systems, processing, structure, and properties. Angew Chem Int Ed, 53, 5262 (2014). http://dx.doi.org/10.1002/anie.201306129. crossref(new window)

8.
Morgan P. Carbon Fibers and Their Composites, Taylor & Francis, Boca Raton, FL (2005).

9.
Sedghi A, Farsani RE, Shokuhfar A. The effect of commercial polyacrylonitrile fibers characterizations on the produced carbon fibers properties. J Mater Process Technol, 198, 60 (2008). http://dx.doi.org/10.1016/j.jmatprotec.2007.06.052. crossref(new window)

10.
Leon y Leon CA, O'Brien R, McHugh JJ, Dasarathy H, Schimpf WC. Polyethylene and polypropylene as low cost carbon fiber (LCCF) precursors. Int SAMPE Tech Conf Series, 33, 1289 (2001).

11.
Leon y Leon CA, Schimpf WC, Hansen BC, Herren CW, Frame A, Heatherly PW. Low cost carbon fiber from non-acrylic based precursors: polyethylene. Int SAMPE Tech Conf Series, 34, 506 (2002).

12.
Dasarathy H, Hansen BC, Schimpf WC, Leon y Leon CA, Herren CW, Frame A, Heatherly PW. Low cost carbon fiber from radiated textile acrylics. Int SAMPE Tech Conf Series, 34, 520 (2002).

13.
Dasarathy H, Schimpf WC, Burleson T, Smith SB, Frame A, Heatherly PW. Low cost carbon fiber from chemically modified acrylics. Int SAMPE Tech Conf Series, 34, 531 (2002).

14.
Friedfeld B. Cost assessment of lignin-and PAN-based precursor for low-cost carbon fiber. Presentation for the Automotive Composites Consortium (17 January 2007).

15.
U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies. Low-cost carbon fibers from renewable resources. FY 2004: Progress Report for Automotive Lightweighting Materials, U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies, Washington, D.C., 125 (April 2005).

16.
Maradur SP, Kim CH, Kim SY, Kim BH, Kim WC, Yang KS. Preparation of carbon fibers from a lignin copolymer with polyacrylonitrile. Synth Met, 162, 453 (2012). http://dx.doi.org/10.1016/j.synthmet.2012.01.017. crossref(new window)

17.
Shen Q, Zhang T, Zhang WX, Chen S, Mezgebe M. Lignin-based activated carbon fibers and controllable pore size and properties. J Appl Polym Sci, 121, 989 (2011). http://dx.doi.org/10.1002/app.33701. crossref(new window)

18.
Mohamad Ibrahim MN, Ahmed-Haras MR, Sipaut CS, Aboul-Enein HY, Mohamed AA. Preparation and characterization of a newly water soluble lignin graft copolymer from oil palm lignocellulosic waste. Carbohydr Polym, 80, 1102 (2010). http://dx.doi.org/10.1016/j.carbpol.2010.01.030. crossref(new window)

19.
Baker DA, Rials TG. Recent advances in low-cost carbon fiber manufacture from lignin. J Appl Polym Sci, 130, 713 (2013). http://dx.doi.org/10.1002/app.39273. crossref(new window)

20.
Math F, Marianneau G. A new method for manufacturing carbonfibre microelectrodes. J Neurosci Methods, 52, 149 (1994). crossref(new window)

21.
White TL, Paulauskas FL, Bigelow TS. System to continuously produce carbon fiber via microwave assisted plasma processing. US Patent 8,679,592 (2014).

22.
Kim SY, Kim SY, Choi J, Lee S, Jo SM, Joo J, Lee HS. Two step microwave plasma carbonization including low plasma power precarbonization for polyacrylonitrile based carbon fiber. Polymer, 69, 123 (2015). http://dx.doi.org/10.1016/j.polymer.2015.05.040. crossref(new window)

23.
Yusof N, Ismail AF. Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: a review. J Anal Appl Pyrolysis, 93, 1 (2012). http://dx.doi.org/10.1016/j.jaap.2011.10.001. crossref(new window)

24.
Wazir AH, Kakakhel L. Preparation and characterization of pitchbased carbon fibers. New Carbon Mater, 24, 83 (2009). http://dx.doi.org/10.1016/S1872-5805(08)60039-6. crossref(new window)

25.
Sauder C, Lamon J, Pailler R. The tensile behavior of carbon fibers at high temperatures up to 2400℃. Carbon, 42, 715 (2004). http://dx.doi.org/10.1016/j.carbon.2003.11.020. crossref(new window)

26.
Roger B. Filamentary graphite and method for producing the same. US Patent 2,957,756 (1960).

27.
Alcañiz-Monge J, Cazorla-Amorós D, Linares-Solano A, Oya A, Sakamoto A, Hosm K. Preparation of general purpose carbon fibers from coal tar pitches with low softening point. Carbon, 35, 1079 (1997). http://dx.doi.org/10.1016/S0008-6223(97)00064-X. crossref(new window)

28.
Mora E, Blanco C, Prada V, Santamaría R, Granda M, Menéndez R. A study of pitch-based precursors for general purpose carbon fibres. Carbon, 40, 2719 (2002). http://dx.doi.org/10.1016/S0008-6223(02)00185-9. crossref(new window)

29.
Kim BJ, Eom Y, Kato O, Miyawaki J, Kim BC, Mochida I, Yoon SH. Preparation of carbon fibers with excellent mechanical properties from isotropic pitches. Carbon, 77, 747 (2014). http://dx.doi.org/10.1016/j.carbon.2014.05.079. crossref(new window)

30.
Huang X. Fabrication and properties of carbon fibers. Materials, 2, 2369 (2009). http://dx.doi.org/10.3390/ma2042369. crossref(new window)

31.
Sutasinpromprae J, Jitjaicham S, Nithitanakul M, Meechaisue C, Supaphol P. Preparation and characterization of ultrafine electrospun polyacrylonitrile fibers and their subsequent pyrolysis to carbon fibers. Polym Int, 55, 825 (2006). http://dx.doi.org/10.1002/pi.2040. crossref(new window)

32.
Jie L, Wangxi Z. Structural changes during the thermal stabilization of modified and original polyacrylonitrile precursors. J Appl Polym Sci, 97, 2047 (2005). http://dx.doi.org/10.1002/app.21916. crossref(new window)

33.
Kadla JF, Kubo S, Venditti RA, Gilbert RD, Compere AL, Griffith W. Lignin-based carbon fibers for composite fiber applications. Carbon, 40, 2913 (2002). http://dx.doi.org/10.1016/S0008-6223(02)00248-8. crossref(new window)

34.
Zhang WX, Wang YZ. Manufacture of carbon fibers from polyacrylonitrile precursors treated with CoSO4. J Appl Polym Sci, 85, 153 (2002). http://dx.doi.org/10.1002/app.10560. crossref(new window)

35.
Paiva MC, Kotasthane P, Edie DD, Ogale AA. UV stabilization route for melt-processible PAN-based carbon fibers. Carbon, 41, 1399 (2003). http://dx.doi.org/10.1016/S0008-6223(03)00041-1. crossref(new window)

36.
Bortner MJ, Bhanu V, McGrath JE, Baird DG. Shear rheological properties of acrylic copolymers and terpolymers suitable for potentially melt processable carbon fiber precursors. J Appl Polym Sci, 93, 2856 (2004). http://dx.doi.org/10.1002/app.20833. crossref(new window)

37.
Naskar AK, Walker RA, Proulx S, Edie DD, Ogale AA. UV assisted stabilization routes for carbon fiber precursors produced from melt-processible polyacrylonitrile terpolymer. Carbon, 43, 1065 (2005). http://dx.doi.org/10.1016/j.carbon.2004.11.047. crossref(new window)

38.
Odeshi AG, Mucha H, Wielage B. Manufacture and characterisation of a low cost carbon fibre reinforced C/SiC dual matrix composite. Carbon, 44, 1994 (2006). http://dx.doi.org/10.1016/j.carbon.2006.01.025. crossref(new window)

39.
Warren CCD. Lightweighting composites and lower cost carbon fiber, Oak Ridge National Laboratory, U.S. Department of Energy (March 2013).

40.
Leitten C, Griffith W, Compere A, Shaffer J. High-volume, low-cost precursors for carbon fiber production. SAE Technical Paper 2002-01-1907 (2002). http://dx.doi.org/10.4271/2002-01-1907. crossref(new window)

41.
Hyslop DK, Parent JS. Dynamics and yields of AOTEMPO-mediated polyolefin cross-linking. Polymer, 54, 84 (2013). http://dx.doi.org/10.1016/j.polymer.2012.11.013. crossref(new window)

42.
Dumanlı AG, Windle AH. Carbon fibres from cellulosic precursors: a review. J Mater Sci, 47, 4236 (2012). http://dx.doi.org/10.1007/s10853-011-6081-8. crossref(new window)

43.
Edison TA. Manufacture of filaments for incandescent lamps. US Patent 470,922 (1892).

44.
Roger B, Cranch GE, Moyer RO, Watts WH. Process for manufacturing flexible carbonaceous textile material. US Patent 3,305,315 (1967).

45.
Roger B, Schalamon W. Process for producing carbon fibers having a high young's modulus of elasticity. US Patent 3,716,331 (1973).

46.
Shindo A. Studies on graphite fiber (Report No. 317), Government Industrial Research Institute, Osaka, Japan (1961).

47.
Calvo-Flores FG, Dobado JA. Lignin as renewable raw material. ChemSusChem, 3, 1227 (2010). http://dx.doi.org/10.1002/cssc.201000157. crossref(new window)

48.
Kim KW, Lee HM, Kim BS, Hwang SH, Kwac LK, An KH, Kim BJ. Preparation and thermal properties of polyethylenebased carbonized fibers. Carbon Lett, 16, 62 (2015). http://dx.doi.org/10.5714/CL.2015.16.1.062. crossref(new window)

49.
Baker FS. Low cost carbon fiber from renewable resources, Oak Ridge National Laboratory, U.S. Department of Energy (June 7-11 2010).

50.
Warren D, Naskar AK. Lower cost carbon fiber precursors (Project ID No. LM004), Oak Ridge National Laboratory (May 16 2012).

51.
Silverman J. Radiation processing: the industrial applications of radiation chemistry. J Chem Educ, 58, 168 (1981). http://dx.doi.org/10.1021/ed058p168. crossref(new window)

52.
Uhniat M, Sudoł M, Kudła S. Stabilisation of LDPE cross-linked in the presence of peroxidesII. FTIR study of chemical changes taking place in the LDPE–dicumyl peroxide–Irganox 1081 system. Polym Degrad Stab, 71, 75 (2000). http://dx.doi.org/10.1016/S0141-3910(00)00155-5. crossref(new window)

53.
Uhniat M, Sudoł M, Kudła S. Stabilisation of LDPE cross-linked in the presence of peroxidesII. FTIR study of chemical changes taking place in the LDPE–dicumyl peroxide–Irganox 1081 system. Polym Degrad Stab, 71, 75 (2000). http://dx.doi.org/10.1016/S0141-3910(00)00155-5. crossref(new window)

54.
Zhang D, Sun Q. Structure and properties development during the conversion of polyethylene precursors to carbon fibers. J Appl Polym Sci, 62, 367 (1996). http://dx.doi.org/10.1002/(SICI)1097-4628(19961010)62:2<367::AID-APP11>3.0.CO;2-Z. crossref(new window)

55.
Lewis G. Properties of crosslinked ultra-high-molecular-weight polyethylene. Biomaterials, 22, 371 (2001). http://dx.doi.org/10.1016/S0142-9612(00)00195-2. crossref(new window)

56.
Alvarez VA, Perez CJ. Gamma irradiated LDPE in presence of oxygen. Part I. Non-isothermal crystallization. Thermochim Acta, 570, 64 (2013). http://dx.doi.org/10.1016/j.tca.2013.07.026. crossref(new window)

57.
Cardoso ECL, Scagliusi SR, Parra DF, Lugão AB. Gamma-irradiated cross-linked LDPE foams: characteristics and properties. Radiat Phys Chem, 84, 170 (2013). http://dx.doi.org/10.1016/j.radphyschem.2012.06.023. crossref(new window)

58.
Murray KA, Kennedy JE, McEvoy B, Vrain O, Ryan D, Higginbotham CL. The effects of high energy electron beam irradiation on the thermal and structural properties of low density polyethylene. Radiat Phys Chem, 81, 962 (2012). http://dx.doi.org/10.1016/j.radphyschem.2011.09.011. crossref(new window)

59.
Khonakdar HA, Jafari SH, Wagenknecht U, Jehnichen D. Effect of electron-irradiation on cross-link density and crystalline structure of low- and high-density polyethylene. Radiat Phys Chem, 75, 78 (2006). http://dx.doi.org/10.1016/j.radphyschem.2005.05.014. crossref(new window)

60.
Turos A, Jagielski J, Piątkowska A, Bieliński D, Ślusarski L, Madi NK. Ion beam modification of surface properties of polyethylene. Vacuum, 70, 201 (2003). http://dx.doi.org/10.1016/S0042-207X(02)00643-7. crossref(new window)

61.
Sahre K, Eichhorn KJ, Simon F, Pleul D, Janke A, Gerlach G. Characterization of ion-beam modified polyimide layers. Surf Coat Technol, 139, 257 (2001). http://dx.doi.org/10.1016/S0257-8972(01)01013-1. crossref(new window)

62.
Lee EH, Rao GR, Mansur LK. LET effect on cross-linking and scission mechanisms of PMMA during irradiation. Radiat Phys Chem, 55, 293 (1999). http://dx.doi.org/10.1016/S0969-806X(99)00184-X. crossref(new window)

63.
Nilsson S, Hjertberg T, Smedberg A. Structural effects on thermal properties and morphology in XLPE. Eur Polym J, 46, 1759 (2010). http://dx.doi.org/10.1016/j.eurpolymj.2010.05.003. crossref(new window)

64.
Rouif S. Radiation cross-linked plastics: a versatile material solution for packaging, automotive, electrotechnic and electronics. Radiat Phys Chem, 71, 527 (2004). http://dx.doi.org/10.1016/j.radphyschem.2004.03.050. crossref(new window)

65.
Rizzo P, Baione F, Guerra G, Martinotto L, Albizzati E. Polyethylene unit cell and crystallinity variations as a consequence of different cross-linking processes. Macromolecules, 34, 5175 (2001). http://dx.doi.org/10.1021/ma010121z. crossref(new window)

66.
Smedberg A, Hjertberg T, Gustafsson B. Effect of molecular structure and topology on network formation in peroxide crosslinked polyethylene. Polymer, 44, 3395 (2003). http://dx.doi.org/10.1016/S0032-3861(03)00179-4. crossref(new window)

67.
Sajkiewicz P, Phillips PJ. Peroxide crosslinking of linear low-density polyethylenes with homogeneous distribution of short chain branching. J Polym Sci A, 33, 853 (1995). http://dx.doi.org/10.1002/pola.1995.080330512. crossref(new window)

68.
Celina M, George GA. Characterisation and degradation studies of peroxide and silane crosslinked polyethylene. Polym Degrad Stab, 48, 297 (1995). crossref(new window)

69.
Cameron R, Lien K, Lorigan P. Advances in silane cross-linkable polyethylene. Wire J Int, 23, 56 (1990).

70.
Fabris FW, Stedile FC, Mauler RS, Nachtigall SMB. Free radical modification of LDPE with vinyltriethoxysilane. Eur Polym J, 40, 1119 (2004). http://dx.doi.org/10.1016/j.eurpolymj.2004.01.008. crossref(new window)

71.
Marcilla A, Ruiz-Femenia R, Hernández J, García-Quesada JC. Thermal and catalytic pyrolysis of crosslinked polyethylene. J Anal Appl Pyrolysis, 76, 254 (2006). http://dx.doi.org/10.1016/j.jaap.2005.12.004. crossref(new window)

72.
Yu S, Park C, Hong SM, Koo CM. Thermal conduction behaviors of chemically cross-linked high-density polyethylenes. Thermochim Acta, 583, 67 (2014). http://dx.doi.org/10.1016/j.tca.2014.03.018. crossref(new window)

73.
Wu H, Liang M, Lu C. Non-isothermal crystallization kinetics of peroxide-crosslinked polyethylene: Effect of solid state mechanochemical milling. Thermochim Acta, 545, 148 (2012). http://dx.doi.org/10.1016/j.tca.2012.07.008. crossref(new window)

74.
Harper CA, Petrie EM. Plastics Materials and Processes: A Concise Encyclopedia, Wiley-Interscience, Hoboken, NJ (2003).

75.
Akutsu S, Isaka T, Ishioka M. Process for producing electric conductors coated with crosslinked polyethylene resin. US Patent 4,297,310 (1981).

76.
Rodríguez-Fernández OS, Gilbert M. Aminosilane grafting of plasticized poly(vinyl chloride) I. Extent and rate of crosslinking. J Appl Polym Sci, 66, 2111 (1997). http://dx.doi.org/10.1002/(SICI)1097-4628(19971219)66:11<2111::AID-APP7>3.0.CO;2-K. crossref(new window)

77.
Schmid E. Method for the manufacture of crosslinked polyamide articles. US Patent 5,055,249 (1991).

78.
Cartasegna S. Silane-grafted/moisture-curable ethylene: propylene elastomers for the cable industry. Rubber Chem Technol, 59, 722 (1986). http://dx.doi.org/10.5254/1.3538230. crossref(new window)

79.
Gale GM. Silane compounds in hot-water pipe and cable technology. Appl Organomet Chem, 2, 17 (1988). http://dx.doi.org/10.1002/aoc.590020104. crossref(new window)

80.
Smedberg A, Hjertberg T, Gustafsson B. Crosslinking reactions in an unsaturated low density polyethylene. Polymer, 38, 4127 (1997). http://dx.doi.org/10.1016/S0032-3861(96)00994-9. crossref(new window)

81.
Yussuf AA, Kosior E, Alban L. Silane grafting and crosslinking of metallocene-catalysed LLDPE and LDPE. Malays Polym J, 2, 58 (2007).

82.
Morshedian J, Hoseinpour PM. Polyethylene cross-linking by twostep silane method: a review. Iran Polym J, 18, 103 (2009).

83.
Oliveira GL, Costa MF. Optimization of process conditions, characterizationand mechanical properties of silane crosslinked highdensity polyethylene. Mater Sci Eng, A, 527, 4593 (2010). http://dx.doi.org/10.1016/j.msea.2010.03.102. crossref(new window)

84.
Sirisinha K, Boonkongkaew M, Kositchaiyong S. The effect of silane carriers on silane grafting of high-density polyethylene and properties of crosslinked products. Polym Test, 29, 958 (2010). http://dx.doi.org/10.1016/j.polymertesting.2010.08.004. crossref(new window)

85.
Sirisinha K, Chimdist S. Comparison of techniques for determining crosslinking in silane-water crosslinked materials. Polym Test, 25, 518 (2006). http://dx.doi.org/10.1016/j.polymertesting.2006.01.015. crossref(new window)

86.
Ihata J. Formation and reaction of polyenesulfonic acid. I. Reaction of polyethylene films with SO3. J Polym Sci A, 26, 167 (1988). http://dx.doi.org/10.1002/pola.1988.080260116. crossref(new window)

87.
Younker JM, Saito T, Hunt MA, Naskar AK, Beste A. Pyrolysis pathways of sulfonated polyethylene, an alternative carbon fiber precursor. J Am Chem Soc, 135, 6130 (2013). http://dx.doi.org/10.1021/ja3121845. crossref(new window)

88.
Werkema EL, Castro L, Maron L, Eisenstein O, Andersen RA. Selectivity in the C–H activation reaction of CH3OSO2CH3 with [1,2,4-(Me3C)3C5H2]2CeH or [1,2,4-(Me3C)3C5H2][1,2-(Me3C)2-4-(Me2CCH2)C5H2]Ce: to choose or not to choose. Organometallics, 31, 870 (2012). http://dx.doi.org/10.1021/om200842t. crossref(new window)

89.
Mansfield E, Kar A, Quinn TP, Hooker SA. Quartz crystal microbalances for microscale thermogravimetric analysis. Anal Chem, 82, 9977 (2010). http://dx.doi.org/10.1021/ac102030z. crossref(new window)

90.
Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B, 4, 323 (1966). http://dx.doi.org/10.1002/pol.1966.110040504. crossref(new window)

91.
Smith M, March J. March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. 5th ed., Wiley, New York, NY, 1298 (2001).

92.
Cubbage JW, Vos BW, Jenks WS. Ei elimination: an unprecedented facet of sulfone chemistry. J Am Chem Soc, 122, 4968 (2000). http://dx.doi.org/10.1021/ja994150p. crossref(new window)

93.
Cubbage JW, Guo Y, McCulla RD, Jenks WS. Thermolysis of alkyl sulfoxides and derivatives: a comparison of experiment and theory. J Org Chem, 66, 8722 (2001). http://dx.doi.org/10.1021/jo0160625. crossref(new window)

94.
Claes L, François JP, Deleuze MS. From sulfoxide precursors to model oligomers of conducting polymers. J Am Chem Soc, 124, 7563 (2002). http://dx.doi.org/10.1021/ja012700p. crossref(new window)

95.
Claes L, François JP, Deleuze MS. Theoretical study of the conversion of sulfonyl precursors into chains of poly(p-phenylene vinylene). J Am Chem Soc, 125, 7129 (2003). http://dx.doi.org/10.1021/ja021295e. crossref(new window)

96.
Zhao YL, Jones WH, Monnat F, Wudl F, Houk KN. Mechanisms of thermal decompositions of polysulfones: a DFT and CBSQB3 study. Macromolecules, 38, 10279 (2005). http://dx.doi.org/10.1021/ma051503y. crossref(new window)

97.
Zhao Y, Truhlar D. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc, 120, 215 (2008). http://dx.doi.org/10.1007/s00214-007-0310-x. crossref(new window)

98.
Zhao Y, Schultz NE, Truhlar DG. Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput, 2, 364 (2006). http://dx.doi.org/10.1021/ct0502763. crossref(new window)

99.
Denis PA. Basis set requirements for sulfur compounds in density functional theory: a comparison between correlation-consistent, polarized-consistent, and pople-type basis sets. J Chem Theory Comput, 1, 900 (2005). http://dx.doi.org/10.1021/ct0500702. crossref(new window)