Advanced SearchSearch Tips
Non-blinking dendritic crystals from C-dot solution
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 16, Issue 3,  2015, pp.211-214
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2015.16.3.211
 Title & Authors
Non-blinking dendritic crystals from C-dot solution
Mewada, Ashmi; Vishwakarma, Ritesh; Patil, Bhushan; Phadke, Chinmay; Kalita, Golap; Sharon, Maheshwar; Sharon, Madhuri;
  PDF(new window)
Bio-imaging and drug carriers for delivery have created a huge demand for crystals. Crystals are fascinating materials that have been grown for a long time but obtaining biocompatible fluorescent crystals is a challenging task. We report on the growth of fluorescent crystals using a carbon dot (C-dot) solution by a hydrothermal process. The crystallization pattern of these C-dots exhibited a unique dendritic structure having a feather-like morphology. The growth temperature and pressure were maintained at 60℃ and 200 mmHg, respectively, for crystal growth. A green fluorescence (under UV light) that was observed in the C-dot solution was retained in the crystals formed from the solution. Cytotoxicity studies on Vero cells revealed the crystals to be extremely biocompatible. These fluorescent crystals are extremely well suited for biomedical and optoelectronic applications.
carbon dots;fluorescence;crystal morphology;dendrites;hydrothermal crystal growth;
 Cited by
Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc, 126, 12736 (2004). crossref(new window)

Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lian S, Tsang CHA, Yang X, Lee ST. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed, 49, 4430 (2010). crossref(new window)

Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie SY. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc, 128, 7756 (2006). crossref(new window)

Mewada A, Pandey S, Shinde S, Mishra N, Oza G, Thakur M, Sharon M, Sharon M. Green synthesis of biocompatible carbon dots using aqueous extract of Trapa bispinosa peel. Mater Sci Eng C, 33, 2914 (2013). crossref(new window)

Welsher K, Liu Z, Daranciang D, Dai H. Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett, 8, 586 (2008). crossref(new window)

Esteves da Silva JCG, Gonçalves HMR. Analytical and bioanalytical applications of carbon dots. TrAC Trends Anal Chem, 30, 1327 (2011). crossref(new window)

Pandey S, Mewada A, Thakur M, Tank A, Sharon M. Cysteamine hydrochloride protected carbon dots as a vehicle for the efficient release of the anti-schizophrenic drug haloperidol. RSC Adv, 3, 26290 (2013). crossref(new window)

Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science, 281, 2013 (1998). crossref(new window)

Jazbinsek M, Mutter L, Gunter P. Photonic applications with the organic nonlinear optical crystal DAST. IEEE J Sel Topics Quantum Electron, 14, 1298 (2008). crossref(new window)

Lu Y, Zhao J, Zhang R, Liu Y, Liu D, Goldys EM, Yang X, Xi P, Sunna A, Lu J, Shi Y, Leif RC, Huo Y, Shen J, Piper JA, Robinson JP, Jin D. Tunable lifetime multiplexing using luminescent nanocrystals. Nat Photon, 8, 32 (2014). crossref(new window)

Frascella F, Ricciardi S, Rivolo P, Moi V, Giorgis F, Descrovi E, Michelotti F, Munzert P, Danz N, Napione L, Alvaro M, Bussolino F. A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves. Sensors, 13, 2011 (2013). crossref(new window)

Wang X, Cao L, Lu F, Meziani MJ, Li H, Qi G, Zhou B, Har ruff BA, Kermarrec F, Sun YP. Photoinduced electron transfers with carbon dots. Chem Commun, 3774 (2009). crossref(new window)

Ray SC, Saha A, Jana NR, Sarkar R. Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C, 113, 18546 (2009). crossref(new window)

Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Karakassides M, Giannelis EP. Surface functionalized carbogenic quantum dots. Small, 4, 455 (2008). crossref(new window)

Land TA, De Yoreo JJ, Lee JD. An in-situ AFM investigation of canavalin crystallization kinetics. Surf Sci, 384, 136 (1997). crossref(new window)

Gentili D, Foschi G, Valle F, Cavallini M, Biscarini F. Applications of dewetting in micro and nanotechnology. Chem Soc Rev, 41, 4430 (2012). crossref(new window)

Mewada A, Pandey S, Thakur M, Jadhav D, Sharon M. Swarming carbon dots for folic acid mediated delivery of doxorubicin and biological imaging. J Mater Chem B, 2, 698 (2014). crossref(new window)

Pandey S, Mewada A, Oza G, Thakur M, Mishra N, Sharon M, Sharon M. Synthesis and centrifugal separation of fluorescent carbon dots at room temperature. Nanosci Nanotechnol Lett, 5, 775 (2013). crossref(new window)

Auer S, Frenkel D. Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy. Nature, 413, 711 (2001). crossref(new window)

Vekilov PG. The two-step mechanism of nucleation of crystals in solution. Nanoscale, 2, 2346 (2010). crossref(new window)

Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed, 49, 6726 (2010). crossref(new window)

Song Y, Shi W, Chen W, Li X, Ma H. Fluorescent carbon nanodots conjugated with folic acid for distinguishing folate-receptor-positive cancer cells from normal cells. J Mater Chem, 22, 12568 (2012). crossref(new window)