Advanced SearchSearch Tips
Advances in liquid crystalline nano-carbon materials: preparation of nano-carbon based lyotropic liquid crystal and their fabrication of nano-carbon fibers with liquid crystalline spinning
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 16, Issue 4,  2015, pp.223-232
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2015.16.4.223
 Title & Authors
Advances in liquid crystalline nano-carbon materials: preparation of nano-carbon based lyotropic liquid crystal and their fabrication of nano-carbon fibers with liquid crystalline spinning
Choi, Yong-Mun; Jung, Jin; Hwang, Jun Yeon; Kim, Seung Min; Jeong, Hyeonsu; Ku, Bon-Cheol; Goh, Munju;
  PDF(new window)
This review presents current progress in the preparation methods of liquid crystalline nano-carbon materials and the liquid crystalline spinning method for producing nano-carbon fibers. In particular, we focus on the fabrication of liquid crystalline carbon nanotubes by spinning from superacids, and the continuous production of macroscopic fiber from liquid crystalline graphene oxide.
liquid crystal;carbon nanotube;graphene oxide;liquid crystalline spinning;nano-carbon fiber;
 Cited by
de Heer WA, Châtelain A, Ugarte D. A carbon nanotube fieldemission electron source. Science, 270, 1179 (1995). crossref(new window)

Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes: the route toward applications. Science, 297, 787 (2002). crossref(new window)

Akagi K, Piao G, Kaneko S, Sakamaki K, Shirakawa H, Kyotani M. Helical polyacetylene synthesized with a chiral nematic reaction field. Science, 282, 1683 (1998). crossref(new window)

Goh M, Kyotani M, Akagi K. Highly twisted helical polyacetylene with morphology free from the bundle of fibrils synthesized in chiral nematic liquid crystal reaction field. J Am Chem Soc, 129, 8519(2007). crossref(new window)

Goh M, Matsushita T, Kyotani M, Akagi K. Helical polyacetylenes synthesized in helical sense and pitch controllable chiral nematic liquid crystal with unprecedented temperature dependence. Macromolecules, 40, 4762 (2007). crossref(new window)

Goh M, Matsushita S, Akagi K. From helical polyacetylene to helical graphite: synthesis in the chiral nematic liquid crystal fieldand morphology-retaining carbonization. Chem Soc Rev, 39, 2466(2010). crossref(new window)

Zhou X, Kang SW, Kumar S, Li Q. Self-assembly of discotic liquid crystal porphyrin into more controllable ordered nanostructuremediated by fluorophobic effect. Liq Cryst, 36, 269 (2009). crossref(new window)

Sakurai T, Tashiro K, Honsho Y, Saeki A, Seki S, Osuka A, Muranaka A, Uchiyama M, Kim J, Ha S, Kato K, Takata M, Aida T. Electron-or hole-transporting nature selected by side-chain directed π-stacking geometry: liquid crystalline fused metalloporphyrin dimers. J Am Chem Soc, 133, 6537 (2011). crossref(new window)

Sawamura M, Kawai K, Matsuo Y, Kanie K, Kato T, Nakamura E. Stacking of conical molecules with a fullerene apex into polarcolumns in crystals and liquid crystals. Nature, 419, 702 (2002). crossref(new window)

Li CZ, Matsuo Y, Nakamura E. Octupole-like supramolecularaggregates of conical iron fullerene complexes into a three-dimensional liquid crystalline lattice. J Am Chem Soc, 132, 15514(2010). crossref(new window)

Herwig P, Kayser CW, Müllen K, Spiess HW. Columnar mesophases of alkylated hexa-peri-hexabenzocoronenes with remarkably large phase widths. Adv Mater, 8, 510 (1996). crossref(new window)

Schmidt-Mende L, Fechtenkötter A, Müllen K, Moons E, Friend RH, MacKenzie JD. Self-organized discotic liquid crystals forhigh-efficiency organic photovoltaics. Science, 293, 1119 (2001). crossref(new window)

Geng Y, Fechtenköttera A, Müllen K. Star-like substituted hexaarylbenzenes: synthesis and mesomorphic properties. J Mater Chem, 11, 1634 (2001). crossref(new window)

Grigoriadis C, Haase N, Butt HJ, Müllen K, Floudas G. Negative thermal expansion in discotic liquid crystals of nanographenes. Adv Mater, 22, 1403 (2010). crossref(new window)

Yoo HJ, Lee SY, You NH, Lee DS, Yeo H, Choi YM, Goh M,Park J, Akagi K, Cho JW. Dispersion and magnetic field-inducedalignment of functionalized carbon nanotubes in liquid crystals. Synth Met, 181, 10 (2013). crossref(new window)

Onsager L. The effect of shape on the interaction of colloidal particles. Ann N Y Acad Sci, 51, 627 (1949). crossref(new window)

Flory PJ. Statistical thermodynamics of semi-flexible chainmolecules. Proc Math Phys Sci, 234, 73 (1956). crossref(new window)

Sabba Y, Thomas EL. High-concentration dispersion of single-wallcarbon nanotubes. Macromolecules, 37, 4815 (2004). crossref(new window)

Zhang S, Kinloch IA, Windle AH. Mesogenicity drives fractionation in lyotropic aqueous suspensions of multiwall carbonnanotubes. Nano Lett, 6, 568 (2006). crossref(new window)

Fraden S, Maret G, Caspar DLD. Angular correlations and the isotropic-nematic phase transition in suspensions of tobacco mosaicvirus. Phys Rev E Stat Nonlin Soft Matter Phys, 48, 2816 (1993). crossref(new window)

Miller AF, Donald AM. Surface and interfacial tension of cellulose suspensions. Langmuir, 18, 10155 (2002). crossref(new window)

Dong XM, Gray DG. Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir, 13, 2404 (1997). crossref(new window)

Hamm M, Elliott JA, Smithson HJ, Windle AH. Multiscale modelling of carbon nanotubes. Mater Res Soc Symp Proc, 788, 623(2003). crossref(new window)

Song W, Kinloch IA, Windle AH. Nematic liquid crystallinity of multiwall carbon nanotubes. Science, 302, 1363 (2003). crossref(new window)

Song W, Windle AH. Isotropic-nematic phase transition of dispersions of multiwall carbon nanotubes. Macromolecules, 38, 6181(2005). crossref(new window)

Dalton AB, Stephan C, Coleman JN, McCarthy B, Ajayan PM,Lefrant S, Bernier P, Blau WJ, Byrne HJ. Selective Interactionof a semiconjugated organic polymer with single-wall nanotubes. J Phys Chem B, 104, 10012 (2000). crossref(new window)

Shvartzman-Cohen R, Levi-Kalisman Y, Nativ-Roth E, Yerushalmi-Rozen R. Generic approach for dispersing single-walled carbon nanotubes: the strength of a weak interaction. Langmuir, 20, 6085(2004). crossref(new window)

Sinani VA, Gheith MK, Yaroslavov AA, Rakhnyanskaya AA, SunK, Mamedov AA, Wicksted JP, Kotov NA. Aqueous dispersionsof single-wall and multiwall carbon nanotubes with designed amphiphilic polycations. J Am Chem Soc, 127, 3463 (2005). crossref(new window)

Takahashi T, Tsunoda K, Yajima H, Ishii T. Dispersion and purification of single-wall carbon nanotubes using carboxymethylcellulose. Jpn J Appl Phys, 43, 3636 (2004). crossref(new window)

Davis VA, Ericson LM, Parra-Vasquez ANG, Fan H, Wang Y, Prieto V, Longoria JA, Ramesh S, Saini RK, Kittrell C, Billups WE,Adams WW, Hauge RH, Smalley RE, Pasquali M. Phase behaviorand rheology of SWNTs in superacids. Macromolecules, 37, 154(2004). crossref(new window)

Rai PK, Pinnick RA, Parra-Vasquez ANG, Davis VA, SchmidtHK, Hauge RH, Smalley RE, Pasquali M. Isotropic-nematic phasetransition of single-walled carbon nanotubes in strong acids. J AmChem Soc, 128, 591 (2006). crossref(new window)

Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A,Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, ShonYS, Lee TR, Colbert DT, Smalley RE. Fullerene pipes. Science, 280, 1253 (1998). crossref(new window)

Kuznetsova A, Popova I, Yates JT Jr., Bronikowski MJ, Huffman CB, Liu J, Smalley RE, Hwu HH, Chen JG. Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS andvibrational spectroscopic studies. J Am Chem Soc, 123, 10699 (2001). crossref(new window)

Zhang J, Zou H, Qing Q, Yang Y, Li Q, Liu Z, Guo X, Du Z. Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J Phys Chem B, 107, 3712 (2003). crossref(new window)

Li Q, Yan H, Ye Y, Zhang J, Liu Z. Defect location of individualsingle-walled carbon nanotubes with a thermal oxidation strategy. J Phys Chem B, 106, 11085 (2002). crossref(new window)

Ramesh S, Ericson LM, Davis VA, Saini RK, Kittrell C, Pasquali M, Billups WE, Adams WW, Hauge RH, Smalley RE. Dissolution of pristine single walled carbon nanotubes in superacids bydirect protonation. J Phys Chem B, 108, 8794 (2004). crossref(new window)

Davis VA, Parra-Vasquez ANG, Green MJ, Rai PK, Behabtu N,Prieto V, Booker RD, Schmidt J, Kesselman E, Zhou W, Fan H,Adams WW, Hauge RH, Fischer JE, Cohen Y, Talmon Y, Smalley RE, Pasquali M. True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat Nanotechnol, 4, 830 (2009). crossref(new window)

Parra-Vasquez ANG, Behabtu N, Green MJ, Pint CL, Young CC,Schmidt J, Kesselman E, Goyal A, Ajayan PM, Cohen Y, Talmon Y, Hauge RH, Pasquali M. Spontaneous dissolution of ultralongsingle- and multiwalled carbon nanotubes. ACS Nano, 4, 3969 (2010). crossref(new window)

Zhou W, Heiney PA, Fan H, Smalley RE, Fischer JE. Single-walled carbon nanotube-templated crystallization of H2SO4: direct evidence for protonation. J Am Chem Soc, 127, 1640 (2005). crossref(new window)

Duque JG, Parra-Vasquez ANG, Behabtu N, Green MJ, Higginbotham AL, Price BK, Leonard AD, Schmidt HK, Lounis B, Tour JM, Doorn SK, Cognet L, Pasquali M. Diameter-dependent solubility of single-walled carbon nanotubes. ACS Nano, 4, 3063 (2010). crossref(new window)

Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ. Young’s modulus of single-walled nanotubes. Phys Rev B CondensMatter Mater Phys, 58, 14013 (1998). crossref(new window)

Walters DA, Ericson LM, Casavant MJ, Liu J, Colbert DT, Smith KA, Smalley RE. Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl Phys Lett, 74, 3803 (1999). crossref(new window)

Yu MF, Files BS, Arepalli S, Ruoff RS. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys-Rev Lett, 84, 5552 (2000). crossref(new window)

Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, TománekD, Fischer JE, Smalley RE. Crystalline ropes of metallic carbonnanotubes. Science, 273, 483 (1996). crossref(new window)

Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ, Dekker C. Individual single-wall carbon nanotubesas quantum wires. Nature, 386, 474 (1997). crossref(new window)

McEuen PL, Fuhrer MS, Park H. Single-walled carbon nanotube electronics. IEEE Trans Nanotechnol, 1, 78 (2002). crossref(new window)

Hone J, Whitney M, Piskoti C, Zettl A. Thermal conductivity ofsingle-walled carbon nanotubes. Phys Rev B Condens Matter Mater Phys, 59, R2514 (1999). crossref(new window)

Che J, Çagin T, Goddard WA. Thermal conductivity of carbon nanotubes. Nanotechnology, 11, 65 (2000). crossref(new window)

Rao CNR, Sood AK, Subrahmanyam KS, Govindaral A. Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed, 48, 7752 (2009). crossref(new window)

Geim AK, Novoselov KS. The rise of graphene. Nat Mater, 6, 183(2007). crossref(new window)

Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 287, 637 (2000). crossref(new window)

Frank S, Poncharal P, Wang ZL, de Heer WA. Carbon nanotubequantum resistors. Science, 280, 1744 (1998). crossref(new window)

Hone J, Whitney M, Zettl A. Thermal conductivity of single-walled carbon nanotubes. Synth Met, 103, 2498 (1999). crossref(new window)

Berber S, Kwon YK, Tománek D. Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett, 84, 4613 (2000). crossref(new window)

Li QW, Li Y, Zhang XF, Chikkannanavar SB, Zhao YH, Dangelewicz AM, Zheng LX, Doorn SK, Jia QX, Peterson DE, Arendt PN, Zhu YT. Structure-dependent electrical properties of carbon nanotube fibers. Adv Mater, 19, 3358 (2007). crossref(new window)

Ericson LM, Fan H, Peng H, Davis VA, Zhou W, Sulpizio J, WangY, Booker R, Vavro J, Guthy C, Parra-Vasquez ANG, Kim MJ, Ramesh S, Saini RK, Kittrell C, Lavin G, Schmidt H, Adams WW, Billups WE, Pasquali M, Hwang WF, Hauge RH, Fischer JE,Smalley RE. Macroscopic, neat, single-walled carbon nanotube fibers. Science, 305, 1447 (2004). crossref(new window)

Nikolaev P, Bronikowski MJ, Bradley RK, Rohmund F, Colbert DT, Smith KA, Smalley RE. Gas-phase catalytic growth of singlewalled carbon nanotubes from carbon monoxide. Chem Phys Lett, 313, 91 (1999). crossref(new window)

Bronikowski MJ, Willis PA, Colbert DT, Smith KA, Smalley RE. Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: a parametric study. J Vac SciTechnol A, 19, 1800 (2001). crossref(new window)

Behabtu N, Young CC, Tsentalovich DE, Kleinerman O, Wang X,Ma AWK, Bengio EA, ter Waarbeek RF, de Jong JJ, Hoogerwerf RE, Fairchild SB, Ferguson JB, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto MJ, Pasquali M. Strong, light, multifunctional fibersof carbon nanotubes with ultrahigh conductivity. Science, 339, 182 (2013). crossref(new window)

Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS. Preparation and characterization of graphene oxide paper. Nature, 448, 457 (2007). crossref(new window)

Geim AK. Graphene: status and prospects. Science, 324, 1530 (2009). crossref(new window)

Gómez-Navarro C, Burghard M, Kern K. Elastic properties ofchemically derived single graphene sheets. Nano Lett, 8, 2045 (2008). crossref(new window)

Li D, Müller MB, Gilje S, Kaner RB, Wallace GG. Processableaqueous dispersions of graphene nanosheets. Nat Nano technol, 3, 101 (2008). crossref(new window)

Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev, 39, 228 (2010). crossref(new window)

Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater, 22, 3906 (2010). crossref(new window)

Segal M. Selling graphene by the ton. Nat Nanotechnol, 4, 612 (2009). crossref(new window)

Lee SH, Lee DH, Lee WJ, Kim SO. Tailored assembly of carbonnanotubes and graphene. Adv Funct Mater, 21, 1338 (2011). crossref(new window)

Brodie BC. Sur le poids atomique du graphite. Ann Chim Phys, 59, 466 (1860).

Hummer WS Jr., Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 80, 1339 (1958). crossref(new window)

Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Graphene-based composite materials. Nature, 442, 282 (2006). crossref(new window)

Xu Z, Gao C. Aqueous liquid crystals of graphene oxide. ACSNano, 5, 2908 (2011). crossref(new window)

Kim JE, Han TH, Lee SH, Kim JY, Ahn CW, Yun JM, Kim SO. Graphene oxide liquid crystals. Angew Chem Int Ed, 50, 3043(2011). crossref(new window)

Lei X, Xu Z, Sun H, Wang S, Griesinger C, Peng L, Gao C, Tan RX. Graphene oxide liquid crystals as a versatile and tunable alignment medium for the measurement of residual dipolar couplingsin organic solvents. J Am Chem Soc, 136, 11280 (2014). crossref(new window)

de Gennes PG, Prost J. The Physics of Liquid Crystals. 2nd ed.,Oxford University Press, New York, NY (1993).

van der Kooij FM, Lekkerkerker HNW. Formation of nematic liquid crystals in suspensions of hard colloidal platelets. J Phys Chem B, 102, 7829 (1998). crossref(new window)

Bates MA, Frenkel D. Nematic-isotropic transition in polydisperse systems of infinitely thin hard platelets. J Chem Phys, 110, 6553 (1999). crossref(new window)

Yang X, Guo C, Ji L, Li Y, Tu Y. Liquid crystalline and shear-induced properties of an aqueous solution of graphene oxide sheets. Langmuir, 29, 8103 (2013). crossref(new window)

Shen TZ, Hong SH, Song JK. Electro-optical switching of graph eneoxide liquid crystals with an extremely large Kerr coefficient. Nat Mater, 13, 394 (2014). crossref(new window)

Dan B, Behabtu N, Martinez A, Evans JS, Kosynkin DV, Tour JM, Pasquali M, Smalyukh II. Liquid crystals of aqueous, giant graphene oxide flakes. Soft Matter, 7, 11154 (2011). crossref(new window)

Aboutalebi SH, Gudarzi MM, Zheng QB, Kim JK. Spontaneous formation of liquid crystals in ultra large graphene oxide dispersions. Adv Funct Mater, 21, 2978 (2011). crossref(new window)

Jalili R, Aboutalebi SH, Esrafilzadeh D, Konstantinov K, Razal JM, Moulton SE, Wallace GG. Formation and process ability ofliquid crystalline dispersions of graphene oxide. Mater Horiz, 1, 87 (2014). crossref(new window)

Kumar P, Maiti UN, Lee KE, Kim SO. Rheological properties of graphene oxide liquid crystal. Carbon, 80, 453 (2014). crossref(new window)

Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat Commun, 2, 571 (2011). crossref(new window)

Xu Z, Sun H, Zhao X, Gao C. Ultra strong fibers assembled from giant graphene oxide sheets. Adv Mater, 25, 188 (2013). crossref(new window)

Xiang C, Young CC, Wang X, Yan Z, Hwang CC, Cerioti G, LinJ, Kono J, Pasquali M, Tour JM. Large flake graphene oxide fibers with unconventional 100% knot efficiency and highly aligned small flake graphene oxide fibers. Adv Mater, 25, 4592 (2013). crossref(new window)

Jalili R, Aboutalebi SH, Esrafilzadeh D, Shepherd RL, Chen J,Aminorroaya-Yamini S, Konstantinov K, Minett AI, Razal JM,Wallace GG. Scalable one-step wet-spinning of graphene fiber sand yarns from liquid crystalline dispersions of graphene oxide: towards multifunctional textiles. Adv Funct Mater, 23, 5345 (2013). crossref(new window)

Kim YS, Kang JH, Kim T, Jung Y, Lee K, Oh JY, Park J, Park CR. Easy preparation of readily self-assembled high-performance graphene oxide fibers. Chem Mater, 26, 5549 (2014). crossref(new window)

Xu Z, Zhang Y, Li P, Gao C. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano, 6, 7103(2012). crossref(new window)

Liu Z, Li Z, Xu Z, Xia Z, Hu X, Kou L, Peng L, Wei Y, Gao C. Wetspun continuous graphene films. Chem Mater, 26, 6786 (2014). crossref(new window)

Cao J, Zhang Y, Men C, Sun Y, Wang Z, Zhang X, Li Q. Programmable writing of graphene oxide/reduced graphene oxide fibers for sensible networks with in situ welded junctions. ACS Nano, 8, 4325 (2014). crossref(new window)

Xu Z, Gao C. Graphene in Macroscopic Order : Liquid Crystal sand Wet-Spun. Acc. Chem. Res., 47, 1267 (2014). crossref(new window)