Advanced SearchSearch Tips
Photocatalytic performance of graphene/Ag/TiO2 hybrid nanocomposites
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 16, Issue 4,  2015, pp.247-254
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2015.16.4.247
 Title & Authors
Photocatalytic performance of graphene/Ag/TiO2 hybrid nanocomposites
Lee, Jong-Ho; Kim, In-Ki; Cho, Donghwan; Youn, Jeong-Il; Kim, Young-Jig; Oh, Han-Jun;
  PDF(new window)
To improve photocatalytic efficiency, graphene/Ag/TiO2 nanotube catalyst was synthesized, and its surface characteristics and photocatalytic activity investigated. For deposition of Ag nanoparticles on the TiO2 nanotubes, a polymer compound containing CH3COOAg/poly(L-lactide) was utilized, and the silver particles were precipitated by reducing the silver ions during the annealing process. Graphene deposition on the Ag/TiO2 nanotubes was achieved using an electrophoretic deposition process. Based on the dye degradation results, it was determined that the photocatalytic efficiency was significantly affected by deposition of silver particles and graphene on the TiO2 catalyst. Highly efficient destruction of the dye was obtained with the new graphene/Ag/TiO2 nanotube photocatalyst. This may be attributed to a synergistic effect of the graphene and Ag nanoparticles on the TiO2 nanotubes.
graphene;titania nanotube;photocatalyst;anodization;silver nanoparticles;
 Cited by
Enhanced Photocatalytic Activity Based on Composite Structure with Downconversion Material and Graphene, Industrial & Engineering Chemistry Research, 2016, 55, 6, 1559  crossref(new windwow)
Biogenic synthesis from Prunus × yedoensis leaf extract, characterization, and photocatalytic and antibacterial activity of TiO2 nanoparticles, Research on Chemical Intermediates, 2017, 1568-5675  crossref(new windwow)
Sirivisoot S, Yao C, Xiao X, Sheldon BW, Webster TJ. Greater osteoblast functions on multiwalled carbon nanotubes grown from anodized nanotubular titanium for orthopedic applications. Nanotechnology, 18, 365102 (2007). crossref(new window)

Grimes CA. Synthesis and application of highly ordered arrays of TiO2 nanotubes. J Mater Chem, 17, 1451 (2007). crossref(new window)

Wang G, Wu F, Zhang X, Luo M, Deng N. Enhanced TiO2 photocatalytic degradation of bisphenol E by β-cyclodextrin in suspended solutions. J Hazard Mater, 133, 85 (2006). crossref(new window)

Zhang X, Wu F, Wang Z, Guo Y, Deng N. Photocatalytic degradation of 4,4'-biphenol in TiO2 suspension in the presence of cyclodextrins: a trinity integrated mechanism. J Mol Catal A Chem, 301, 134 (2009). crossref(new window)

Mohapatra SK, Misra M, Mahajan VK, Raja KS. Synthesis of Y-branched TiO2 nanotubes. Mater Lett, 62, 1772 (2008). crossref(new window)

Muñoz AG. Semiconducting properties of self-organized TiO2 nanotubes. Electrochim Acta, 52, 4167 (2007). crossref(new window)

Ghicov A, Schmidt B, Kunze J, Schmuki P. Photoresponse in the visible range from Cr doped TiO2 nanotubes. Chem Phys Lett, 433, 323 (2007). crossref(new window)

Krishna V, Noguchi N, Koopman B, Moudgil B. Enhancement of titanium dioxide photocatalysis by water-soluble fullerenes. J Colloid Interface Sci, 304, 166 (2006). crossref(new window)

Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK. Fine structure constant defines visual transparency of graphene. Science, 320, 1308 (2008). crossref(new window)

Zhu Y, Cai W, Piner RD, Velamakanni A, Ruoff RS. Transparent self-assembled films of reduced graphene oxide platelets. Appl Phys Lett, 95, 103104 (2009). crossref(new window)

Lightcap IV, Kosel TH, Kamat PV. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat: storing and shuttling electrons with reduced graphene oxide. Nano Lett, 10, 577 (2010). crossref(new window)

Williams G, Seger B, Kamat PV. TiO2-graphene nanocomposites: UV-assisted photocatalytic reduction of graphene oxide. ACS Nano, 2, 1487 (2008). crossref(new window)

Nugrahenny ATU, Kim J, Kim SK, Peck DH, Yoon SH, Jung DH. Preparation and application of reduced graphene oxide as the conductive material for capacitive deionization. Carbon Lett, 15, 38 (2014). crossref(new window)

Son KS, Kim S. Study on electrochemical performances of sulfur-containing graphene nanosheets electrodes for lithium-sulfur cells. Carbon Lett, 15, 113 (2014). crossref(new window)

Oh HJ, Hock R, Schurr R, Hölzing A, Chi CS. Phase transformation and photocatalytic characteristics of anodic TiO2 nanotubular film. J Phys Chem Solids, 74, 708 (2013). crossref(new window)

Chartarrayawadee W, Moulton SE, Li D, Too CO, Wallace GG. Novel composite graphene/platinum electro-catalytic electrodes prepared by electrophoretic deposition from colloidal solutions. Electrochim Acta, 60, 213 (2012). crossref(new window)

Menéndez R, Alvarez P, Botas C, Nacimiento F, Alcántara R, Tirado JL, Ortiz GF. Self-organized amorphous titania nanotubes with deposited graphene film like a new heterostructured electrode for lithium ion batteries. J Power Sources, 248, 886 (2014). crossref(new window)

Oh HJ, Chi CS. Eu–N-doped TiO2 photocatalyst synthesized by micro-arc oxidation. Mater Lett, 86, 31 (2012). crossref(new window)

Steinhart M, Jia Z, Schaper AK, Wehrspohn RB, Gösele U, Wendorff JH. Palladium nanotubes with tailored wall morphologies. Adv Mater, 15, 706 (2003). crossref(new window)

Zhu M, Li X, Liu W, Cui Y. An investigation on the photoelectrochemical properties of dye-sensitized solar cells based on graphene–TiO2 composite photoanodes. J Power Sources, 262, 349 (2014). crossref(new window)

Zhao J, Wu J, Yu F, Zhang X, Lan Z, Lin J. Improving the photovoltaic performance of cadmium sulfide quantum dots-sensitized solar cell by graphene/titania photoanode. Electrochim Acta, 96, 110 (2013). crossref(new window)

Shu W, Liu Y, Peng Z, Chen K, Zhang C, Chen W. Synthesis and photovoltaic performance of reduced graphene oxide–TiO2 nanoparticles composites by solvothermal method. J Alloys Compd, 563, 229 (2013). crossref(new window)

Neumann B, Bogdanoff P, Tributsch H, Sakthivel S, Kisch H. Electrochemical mass spectroscopic and surface photovoltage studies of catalytic water photooxidation by undoped and carbon-doped titania. J Phys Chem B, 109, 16579 (2005). crossref(new window)

Wang J, Zhou Y, Xiong B, Zhao Y, Huang X, Shao Z. Fast lithium-ion insertion of TiO2 nanotube and graphene composites. Electrochim Acta, 88, 847 (2013). crossref(new window)

Li X, Zhang Y, Zhong Q, Li T, Li H, Huang J. Surface decoration with MnO2 nanoplatelets on graphene/TiO2 (B) hybrids for rechargeable lithium-ion batteries. Appl Surf Sci, 313, 877 (2014). crossref(new window)

Qianqian Z, Tang B, Guoxin H. High photoactive and visible-light responsive graphene/titanate nanotubes photocatalysts: preparation and characterization. J Hazard Mater, 198, 78 (2011). crossref(new window)

Zhang H, Lv X, Li Y, Wang Y, Li J. P25-graphene composite as a high performance photocatalyst. ACS Nano, 4, 380 (2010). crossref(new window)

Lamberti A, Garino N, Sacco A, Bianco S, Chiodoni A, Gerbaldi C. As-grown vertically aligned amorphous TiO2 nanotube arrays as high-rate Li-based micro-battery anodes with improved long-term performance. Electrochim Acta, 151, 222 (2015). crossref(new window)

Bae E, Choi W. Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light. Environ Sci Technol, 37, 147 (2003). crossref(new window)

Devi LG, Nagaraj B, Rajashekhar KE. Synergistic effect of Ag deposition and nitrogen doping in TiO2 for the degradation of phenol under solar irradiation in presence of electron acceptor. Chem Eng J, 181-182, 259 (2012). crossref(new window)

Li Q, Hai P. Rapid microwave-assisted synthesis of silver decorated-reduced graphene oxide nanoparticles with enhanced photocatalytic activity under visible light. Mater Sci Semicond Process, 22, 16 (2014). crossref(new window)

Ghavami M, Mohammadi R, Koohi M, Kassaee MZ. Visible light photocatalytic activity of reduced graphene oxide synergistically enhanced by successive inclusion of γ-Fe2O3, TiO2, and Ag nanoparticles. Mater Sci Semicond Process, 26, 69 (2014). crossref(new window)

Yuan W, Gu Y, Li L. Green synthesis of graphene/Ag nanocomposites. Appl Surf Sci, 261, 753 (2012). crossref(new window)

Cao M, Wang P, Ao Y, Wang C, Hou J, Qian J. Photocatalytic degradation of tetrabromobisphenol A by a magnetically separable graphene–TiO2 composite photocatalyst: mechanism and intermediates analysis. Chem Eng J, 264, 113 (2015). crossref(new window)

Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong JR. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc, 133, 10878 (2011). crossref(new window)

Lu MD, Yang SM. Synthesis of poly(3-hexylthiophene) grafted TiO2 nanotube composite. J Colloid Interface Sci, 333, 128 (2009). crossref(new window)

Li H, Wu T, Cai B, Ma W, Sun Y, Gan S, Han D, Niu L. Efficiently photocatalytic reduction of carcinogenic contaminant Cr (VI) upon robust AgCl:Ag hollow nanocrystals. Appl Catal B Environ, 164, 344 (2015). crossref(new window)

Liu Z, Liu Q, Huang Y, Ma Y, Yin S, Zhang X, Sun W, Chen Y. Organic photovoltaic devices based on a novel acceptor material: graphene. Adv Mater, 20, 3924 (2008). crossref(new window)

Linsebigler AL, Lu G, Yates JT. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev, 95, 735 (1995). crossref(new window)

Ohtani B. Photocatalysis A to Z: what we know and what we do not know in a scientific sense. J Photochem Photobiol C Photochem Rev, 11, 157 (2010). crossref(new window)

Henderson MA. A surface science perspective on TiO2 photocatalysis. Surf Sci Rep, 66, 185 (2011). crossref(new window)

Rupa AV, Manikandan D, Divakar D, Sivakumar T. Effect of deposition of Ag on TiO2 nanoparticles on the photodegradation of Reactive Yellow-17. J Hazard Mater, 147, 906 (2007). crossref(new window)

Szabó-Bárdos E, Czili H, Horváth A. Photocatalytic oxidation of oxalic acid enhanced by silver deposition on a TiO2 surface. J Photochem Photobiol A Chem, 154, 195 (2003). crossref(new window)

Sheng Z, Wu Z, Liu Y, Wang H. Gas-phase photocatalytic oxidation of NO over palladium modified TiO2 catalysts. Catal Commun, 9, 1941 (2008). crossref(new window)

Devi LG, Reddy KM. Photocatalytic performance of silver TiO2: role of electronic energy levels. Appl Surf Sci, 257, 6821 (2011). crossref(new window)