Advanced SearchSearch Tips
Structural properties of reduced graphene oxides prepared using various reducing agents
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 16, Issue 4,  2015, pp.255-259
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2015.16.4.255
 Title & Authors
Structural properties of reduced graphene oxides prepared using various reducing agents
Lee, Byung Soo; Lee, Yangjin; Hwang, Jun Yeon; Choi, Young Chul;
  PDF(new window)
reduced graphene oxide;crystallinity;oxygen concentration;reducing agent;
 Cited by
Gómez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett, 7, 3499 (2007). crossref(new window)

Nugrahenny ATU, Kim J, Kim SK, Peck DH, Yoon SH, Jung DH. Preparation and application of reduced graphene oxide as the conductive material for capacitive deionization. Carbon Lett, 15, 38 (2014). crossref(new window)

Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Nano Lett, 8, 902 (2008). crossref(new window)

Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385 (2008). crossref(new window)

Chen H, Müller MB, Gilmore KJ, Wallace GG, Li D. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater, 20, 3557 (2008). crossref(new window)

Stoller MD, Park S, Zhu Y, An J, Ruoff RS. Graphene-based ultracapacitors. Nano Lett, 8, 3498 (2008). crossref(new window)

Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 146, 351 (2008). crossref(new window)

Meric I, Han MY, Young AF, Ozyilmaz B, Kim P, Shepard KL.Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat Nanotechnol, 3, 654 (2008). crossref(new window)

Hong AJ, Song EB, Yu HS, Allen MJ, Kim J, Fowler JD, Wassei JK, Park Y, Wang Y, Zou J, Kaner RB, Weiller BH, Wang KL. Graphene flash memory. ACS Nano, 5, 7812 (2011). crossref(new window)

Lee Y, Bae S, Jang H, Jang S, Zhu SE, Sim SH, Song YI, Hong BH, Ahn JH. Wafer-scale synthesis and transfer of graphene films. Nano Lett, 10, 490 (2010). crossref(new window)

Kim M, Kim Y, Baeck SH, Shim SE. Effect of surface treatment of graphene nanoplatelets for improvement of thermal and electrical properties of epoxy composites. Carbon Lett, 16, 34 (2015). crossref(new window)

Liu J, Yan H, Jiang K. Mechanical properties of graphene platelet-reinforced alumina ceramic composites. Ceram Int, 39, 6215 (2013). crossref(new window)

Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC. Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol, 3, 327 (2008). crossref(new window)

Lee H, Ihm J, Cohen ML, Louie SG. Calcium-decorated graphene based nanostructures for hydrogen storage. Nano Lett, 10, 793 (2010). crossref(new window)

Zhang K, Zhang LL, Zhao XS, Wu J. Graphene/polyaniline nano-fiber composites as supercapacitor electrodes. Chem Mater, 22, 1392 (2010). crossref(new window)

Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS. Detection of individual gas molecules adsorbed on graphene. Nat Mater, 6, 652 (2007). crossref(new window)

Liu Y, Yu D, Zeng C, Miao Z, Dai L. Biocompatible graphene oxide-based glucose biosensors. Langmuir, 26, 6158 (2010). crossref(new window)

Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 306, 666 (2004). crossref(new window)

Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA. Electronic confinement and coherence in patterned epitaxial graphene. Science, 312, 1191 (2006). crossref(new window)

Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324, 1312 (2009). crossref(new window)

Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett, 9, 30 (2009). crossref(new window)

Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706 (2009). crossref(new window)

Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev, 39, 228 (2010). crossref(new window)

Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS. Preparation and characterization of graphene oxide paper. Nature, 448, 457 (2007). crossref(new window)

Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater, 22, 3906 (2010). crossref(new window)

Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, Mc-Govern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol, 3, 563 (2008). crossref(new window)

Paton KR, Varrla E, Backes C, Smith RJ, Khan U, O’Neill A, Boland C, Lotya M, Istrate OM, King P, Higgins T, Barwich S, May P, Puczkarski P, Ahmed I, Moebius M, Pettersson H, Long E, Coelho J, O’Brien SE, McGuire EK, Sanchez BM, Duesberg GS, McEvoy N, Pennycook TJ, Downing C, Crossley A, Nicolosi V, Coleman JN. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater, 13, 624 (2014). crossref(new window)

Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 80, 1339 (1958). crossref(new window)

Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558 (2007). crossref(new window)

Buchsteiner A, Lerf A, Pieper J. Water dynamics in graphite oxide investigated with neutron scattering. J Phys Chem B, 110, 22328 (2006). crossref(new window)

Some S, Kim Y, Yoon Y, Yoo H, Lee S, Park Y, Lee H. High-quality reduced graphene oxide by a dual-function chemical reduction and healing process. Sci Rep, 3, 1929 (2013). crossref(new window)

Reich S, Thomsen C. Raman spectroscopy of graphite. Philos Trans R Soc Lond A, 362, 2271 (2004). crossref(new window)

Ferrari AC. Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun, 143, 47 (2007). crossref(new window)

Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA Jr., Ruoff RS. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon, 47, 145 (2009). crossref(new window)

Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett, 8, 36 (2008). crossref(new window)