JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effects of digestion temperatures and loading amounts on methane production from anaerobic digestion with crop residues
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 16, Issue 4,  2015, pp.265-269
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2015.16.4.265
 Title & Authors
Effects of digestion temperatures and loading amounts on methane production from anaerobic digestion with crop residues
Shin, Joung Du; Park, Sang Won; Lee, Sun-Il; Kim, Hyunook; Lee, Sang Ryong; Kim, Myoung Suk;
  PDF(new window)
 Keywords
cumulative methane yield;Gompertz equation;methane production;
 Language
English
 Cited by
 References
1.
Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C, eds. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, Cambridge University Press, Cambridge (2011).

2.
Deublein D, Steinhauser A. Biogas from Waste and Renewable Resources: An Introduction. 2nd ed., Wiley-VCH, Weinheim (2001).

3.
Bauen A, Jeremy W, Hailes R. Biopowerswitch: A Biomass Blue Print to Meet 15% of OECD Electricity Demand by 2020. WWF Climate Change Program, Berlin, 26 (2004).

4.
Shin J, Hong S, Kwon S, Park W, Kim G, Kim S, Yang J. Assessment of methane potential production with agricultural biomass in Korea. International Workshop on Bio-energy Production and Utilizationin Agricultural Sector, 49-69 (2010).

5.
Murto M, Björnsson L, Mattiasson B. Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure. J Environ Manage, 70, 101 (2004). http://dx.doi.org/10.1016/j.jenvman. 2003.11.001. crossref(new window)

6.
Shin JD, Han SS, Eom KC, Sung SH, Park SW, Kim HO. Predicting methane production potential of anaerobic co-digestion of swine manure and food waste. Environ Eng Res, 13, 93 (2008). http://dx.doi.org/10.4491/eer.2008.13.2.093. crossref(new window)

7.
Ghosh S, Conrad JR, Klass DL. Anaerobic acidogenesis of waste-water sludge. J Water Pollut Control Fed, 47, 30 (1975).

8.
Hawkes FR, Hawkes DL. Anaerobic Digestion. In: Bu’Lock J, Kristiansen B, eds. Basic Biotechnology, Academic Press, London, 337 (1987).

9.
van Lier JB, Tilche A, Ahring BK, Macarie H, Moletta R, Dohanyos M, Pol LW, Lens P, Verstraete W; Management Committee of the IWA Anaerobic Digestion Specialised Group. New perspectives in anaerobic digestion. Water Sci Technol, 43, 1 (2001).

10.
Callaghan FJ, Wase DAJ, Thayanithy K, Forster CF. Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass Bioenergy, 22, 71 (2002). http://dx.doi.org/10.1016/s0961-9534(01)00057-5. crossref(new window)

11.
Claassen PAM, van Lier JB, Lopez Contreras AM, van Niel EWJ, Sijtsma L, Stams AJM, de Vries SS, Weusthuis RA. Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol, 52, 741 (1999). crossref(new window)

12.
Förordning (2001:512) om Deponering av Avfall. Available from: http://www.notisum.se/rnp/sls/lag/20010512.HTM.

13.
Hinken L, Urban I, Haun E, Urban I, Weichgrebe D, Rosenwinkel KH. The valuation of malnutrition in the mono-digestion of maize silage by anaerobic batch tests. Water Sci Technol, 58, 1453 (2008). http://dx.doi.org/10.2166/wst.2008.491. crossref(new window)

14.
Klocke M, Nettmann E, Bergmann I, Mundt K, Souidi K, Mumme J, Linke B. Characterization of the methanogenic Archaea within two-phase biogas reactor systems operated with plant biomass. Syst Appl Microbiol, 31, 190 (2008). http://dx.doi.org/10.1016/j.syapm.2008.02.003. crossref(new window)

15.
Lebuhn M, Liu F, Heuwinkel H, Gronauer A. Biogas production from mono-digestion of maize silage–long-term process stability and requirements. Water Sci Technol, 58, 1645 (2008). http://dx.doi.org/10.2166/wst.2008.495. crossref(new window)

16.
Wichern M, Gehring T, Fischer K, Andrade D, Lübken M, Koch K, Gronauer A, Horn H. Monofermentation of grass silage under mesophilic conditions: measurements and mathematical modeling with ADM 1. Bioresour Technol, 100, 1675 (2009). http://dx.doi.org/10.1016/j.biortech.2008.09.030. crossref(new window)

17.
Romano RT, Zhang R. Co-digestion of onion juice and wastewater sludge using an anaerobic mixed biofilm reactor. Bioresour Technol, 99, 631 (2008). http://dw.doi.org/10.1016/j.biortech.2006.12.043. crossref(new window)

18.
Streeter MD, Dague RR, Main RE. Evaluation of a Field Application,Temperature-phased Anaerobic Digestion, Residuals and Solids Management. Proceeding of the Water Environment Federation 71st Annual Conference and Exposition, Water Environment Federation, Chicago, IL, 181 (1987).

19.
APHA AWWA WEF. Standard Methods for the Examination of Water and Wastewater. 20th ed. APAH, Washington, DC (1988).

20.
Owen WF, Stuckey DC, Healy JB Jr., Young LY, McCarty PL. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res, 13, 485 (1979). http://dx.doi.org/10.1016/0043-1354(79)90043-5. crossref(new window)

21.
Yang K, Yu Y, Hwang S. Selective optimization in thermophilic acidogenesis of cheese-whey wastewater to acetic and butyric acids: partial acidification and methanation. Water Res, 37, 2467 (2003). http://dx.doi.org/10.1016/S0043-1354(03)00006-X. crossref(new window)

22.
Momirlan M, Veziro lu T. Recent directions of world hydrogen production. Renewable Sustainable Energy Rev, 3, 219 (1999). http://dx.doi.org/10.1016/s1364-0321(98)00017-3. crossref(new window)

23.
Lay JJ. Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol Bioeng, 74, 280 (2001). http://dx.doi.org/10.1002/bit.1118. crossref(new window)

24.
Lee YJ, Miyahara T, Noike T. Effect of iron concentration on hydrogen fermentation. Bioresour Technol, 80, 227 (2001). http://dx.doi.org/10.1016/s0960-8524(01)00067-0. crossref(new window)

25.
Chen CC, Lin CY, Lin MC. Acid-base enrichment enhances anaerobic hydrogen production process. Appl Microbiol Biotechnol, 58, 224 (2002). http://dx.doi.org/10.1007/s002530100814. crossref(new window)

26.
Lehtomäki A, Huttunen S, Rintala JA. Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: effect of crop to manure ratio. Resour Conserv Recycl, 51, 591 (2007). http://dx.doi.org/10.1016/j.resconrec.2006.11.004. crossref(new window)

27.
Gunaseelan VN. Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy, 13, 83 (1997). http://dx.doi.org/10.1016/S0961-9534(97)00020-2. crossref(new window)

28.
Lianhua L, Dong L, Yongming S, Longlong M, Zhenhong Y, Xiaoying K. Effect of temperature and solid concentration on anaerobic digestion of rice straw in South China. Int J Hydrogen Energy, 35, 7261 (2010). http://dx.doi.org/10.1016/j.ijhydene.2010.03.074. crossref(new window)

29.
Chandra R, Takeuchi H, Hasegawa T, Kumar R. Improving biode-gradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy, 43, 273 (2012). http://dx.doi.org/10.1016/j.energy.2012.04.029. crossref(new window)

30.
Chandra R, Takeuchi H, Hasegawa T. Hydrothermal pretreatment of rice straw biomass: a potential and promising method for enhanced methane production. Appl Energy, 94, 129 (2012). http://dx.doi.org/10.1016/j.apenergy.2012.01.027. crossref(new window)

31.
Pohl M, Mumme J, Heeg K, Nettmann E. Thermo-and mesophilic anaerobic digestion of wheat straw by the upflow anaerobic solid-state (UASS) process. Bioresour Technol, 124, 321 (2012). http://dx.doi.org/10.1016/j.biortech.2012.08.063. crossref(new window)