JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Experimental study on synthesis of Co/CeO2-doped carbon nanofibers and its performance in supercapacitors
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 16, Issue 4,  2015, pp.270-274
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2015.16.4.270
 Title & Authors
Experimental study on synthesis of Co/CeO2-doped carbon nanofibers and its performance in supercapacitors
Kim, Jongwan; Ghouri, Zafar Khan; Khan, Rabia Zafar; An, Taehee; Park, Mira; Kim, Hak-Yong;
  PDF(new window)
 Keywords
supercapacitors;carbon nanofibers;electrospinning;cerium acetate;cobalt acetate;
 Language
English
 Cited by
 References
1.
Ghouri ZK, Barakat NAM, Obaid M, Lee JH, Kim HY. Co/CeO2-decorated carbon nanofibers as effective non-precious electro-catalyst for fuel cells application in alkaline medium. Ceram Int, 41, 2271 (2015). http://dx.doi.org/10.1016/j.ceramint.2014.10.031. crossref(new window)

2.
Ghouri ZK, Akhtar MS, Zahoor A, Barakat NAM, Han W, Park M, Pant B, Saud PS, Lee CH, Kim HY. High-efficiency super capacitors based on hetero-structured α-MnO2 nanorods. J Alloys Compd, 642, 210 (2015). http://dx.doi.org/10.1016/j.jallcom.2015.04.082. crossref(new window)

3.
Ghouri ZK, Barakat NAM, Park M, Kim BS, Kim HY. Synthesis and characterization of Co/SrCO3 nanorods-decorated carbon nanofibers as novel electrocatalyst for methanol oxidation in alkaline medium. Ceram Int, 41, 6575 (2015). http://dx.doi.org/10.1016/j.ceramint.2015.01.103. crossref(new window)

4.
Ghouri ZK, Barakat NAM, Kim HY. Synthesis and electrochemical properties of MnO2 and co-decorated graphene as novel nanocomposite for electrochemical super capacitors application. Energy Environ Focus, 4, 34 (2015). http://dx.doi.org/10.1166/eef.2015.1136. crossref(new window)

5.
Ghouri ZK, Barakat NAM, Alam AM, Park M, Han TH, Kim HY. Facile synthesis of Fe/CeO2-doped CNFs and their capacitance behavior. Int J Electrochem Sci, 10, 2064 (2015).

6.
Zhang M, Jin X, Zhao Q. Preparation of N-doped activated carbons for electric double-layer capacitors from waste fiberboard by K2CO3 activation. New Carbon Mater, 29, 89 (2014). http://dx.doi.org/10.1016/s1872-5805(14)60128-1. crossref(new window)

7.
Burke A. Ultracapacitors: why, how, and where is the technology. J Power Sources, 91, 37 (2000). http://dx.doi.org/10.1016/s0378-7753(00)00485-7. crossref(new window)

8.
Yoda S, Ishihara K. The advent of battery-based societies and the global environment in the 21st century. J Power Sources, 81-82, 162 (1999). http://dx.doi.org/10.1016/s0378-7753(98)00210-9. crossref(new window)

9.
Becker HI. Low voltage electrolytic capacitor. US Patent 2800616 (1957).

10.
Hu CC, Chang KH, Lin MC, Wu YT. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett, 6, 2690 (2006). http://dx.doi.org/10.1021/nl061576a. crossref(new window)

11.
Barakat NAM, Kanjwal MA, Chronakis IS, Kim HY. Influence of temperature on the photodegradation process using Ag-doped TiO2 nanostructures: negative impact with the nanofibers. J Mol Catal A Chem, 336, 333 (2013). http://dx.doi.org/10.1016/j.molcata.2012.10.012. crossref(new window)

12.
Barakat NAM, Abdelkareem MA, El-Newehy M, Kim HY. Influence of the nanofibrous morphology on the catalytic activity of NiO nanostructures: an effective impact toward methanol electrooxidation. Nanoscale Res Lett, 8, 1 (2013). http://dx.doi.org/10.1186/1556-276x-8-402. crossref(new window)

13.
Liu T, Gu S, Zhang Y, Ren J. Fabrication and characterization of carbon nanofibers with a multiple tubular porous structure via electrospinning. J Polym Res, 19, 1 (2012). http://dx.doi.org/10.1007/s10965-012-9882-9. crossref(new window)

14.
Yousef A, Barakat NAM, Amna T, Abdelkareem MA, Unnithan AR, Al-Deyab SS, Kim HY. Activated carbon/silver-doped polyurethane electrospun nanofibers: single mat for different pollutants treatment. Macromol Res, 20, 1243 (2012). http://dx.doi.org/10.1007/s13233-012-0183-2. crossref(new window)

15.
Barakat NAM, Akhtar MS, Yousef A, El-Newehy M, Kim HY. Pd-Co-doped carbon nanofibers with photoactivity as effective counter electrodes for DSSCs. Chem Eng J, 211-212, 9 (2012). http://dx.doi.org/10.1016/j.cej.2012.09.040. crossref(new window)

16.
Tao XY, Zhang XB, Zhang L, Cheng JP, Liu F, Luo JH, Luo ZQ, Geise HJ. Synthesis of multi-branched porous carbon nanofibers and their application in electrochemical double-layer capacitors. Carbon, 44, 1425 (2006). http://dx.doi.org/10.1016/j.carbon.2005.11.024. crossref(new window)

17.
Tsuji M, Kubokawa M, Yano R, Miyamae N, Tsuji T, Jun MS, Hong S, Lim S, Yoon SH, Mochida I. Fast preparation of PtRu catalysts supported on carbon nanofibers by the microwave-polyol method and their application to fuel cells. Langmuir, 23, 387 (2007). http://dx.doi.org/10.1021/la062223u. crossref(new window)

18.
Prasad KR, Miura N. Potentiodynamically deposited nanostructured manganese dioxide as electrode material for electrochemical redox supercapacitors. J Power Sources, 135, 354 (2004). http://dx.doi.org/10.1016/j.jpowsour.2004.04.005. crossref(new window)

19.
Hosono E, Fujihara S, Honma I, Ichihara M, Zhou H. Synthesis of the CoOOH fine nanoflake film with the high rate capacitance property. J Power Sources, 158, 779 (2006). http://dx.doi.org/10.1016/j.jpowsour.2005.09.052. crossref(new window)

20.
Wang Y, Xia Y. Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15. Electrochim Acta, 51, 3223 (2006). http://dx.doi.org/10.1016/j.electacta.2005.09.013. crossref(new window)

21.
Prasad KR, Miura N. Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors. Electrochem Commun, 6, 1004 (2004). http://dx.doi.org/10.1016/j.elecom.2004.07.017. crossref(new window)

22.
Toupin M, Brousse T, Bélanger D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater, 16, 3184 (2004). http://dx.doi.org/10.1021/cm049649j. crossref(new window)

23.
Nayak PK, Munichandraiah N. Cobalt hydroxide as a capacitor material: tuning its potential window. J Electrochem Soc, 155, A855 (2008). http://dx.doi.org/10.1149/1.2977976. crossref(new window)

24.
Barakat NAM, Abdelkareem MA, Kim HY. Ethanol electro-oxidation using cadmium-doped cobalt/carbon nanoparticles as novel non precious electrocatalyst. Appl Catal A Gen, 455, 193 (2013).http://dx.doi.org/10.1016/j.apcata.2013.02.004. crossref(new window)

25.
Stoukides M. Solid-electrolyte membrane reactors: current experience and future outlook. Catal Rev, 42, 1 (2000). http://dx.doi.org/10.1081/cr-100100259. crossref(new window)

26.
Yin X, Hong L, Liu ZL. Oxygen permeation through the LSCO-80/CeO2 asymmetric tubular membrane reactor. J Memb Sci, 268, 2 (2006). http://dx.doi.org/10.1016/j.memsci.2005.06.005. crossref(new window)

27.
Fu Q, Weber A, Flytzani-Stephanopoulos M. Nanostructured Au-CeO2 catalysts for low-temperature water–gas shift. Catal Lett, 77, 87 (2001). http://dx.doi.org/10.1023/A:1012666128812. crossref(new window)

28.
Fu Q, Saltsburg H, Flytzani-Stephanopoulos M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science, 301, 935 (2003). http://dx.doi.org/10.1126/science.1085721. crossref(new window)

29.
Beie HJ, Gnörich A. Oxygen gas sensors based on CeO2 thick and thin films. Sens Actuators B Chem, 4, 393 (1991). http://dx.doi.org/10.1016/0925-4005(91)80141-6. crossref(new window)

30.
Jasinski P, Suzuki T, Anderson HU. Nanocrystalline undoped ceria oxygen sensor. Sens Actuators B Chem, 95, 73 (2003). http://dx.doi.org/10.1016/s0925-4005(03)00407-6. crossref(new window)

31.
Feng X, Sayle DC, Wang ZL, Paras MS, Santora B, Sutorik AC, Sayle TXT, Yang Y, Ding Y, Wang X, Her YS. Converting ceria polyhedral nanoparticles into single-crystal nanospheres. Science, 312, 1504 (2006). http://dx.doi.org/10.1126/science.1125767. crossref(new window)

32.
Armini S, De Messemaeker J, Whelan CM, Moinpour M, Maex K. Composite polymer core–ceria shell abrasive particles during oxide cmp: a defectivity study. J Electrochem Soc, 155, H653 (2008). http://dx.doi.org/10.1149/1.2949085. crossref(new window)

33.
Steele BCH. Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500℃. Solid State Ionics, 129, 95 (2000). http://dx.doi.org/10.1016/s0167-2738(99)00319-7. crossref(new window)

34.
Park S, Vohs JM, Gorte RJ. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, 404, 265 (2000). http://dx.doi.org/10.1038/35005040. crossref(new window)

35.
Sun C, Hui R, Roller J. Cathode materials for solid oxide fuel cells: a review. J Solid State Electrochem, 14, 1125 (2010). http://dx.doi.org/10.1007/s10008-009-0932-0. crossref(new window)

36.
Sun C, Stimming U. Recent anode advances in solid oxide fuel cells. J Power Sources, 171, 247 (2007). http://dx.doi.org/10.1016/j.jpowsour.2007.06.086. crossref(new window)

37.
Xu B, Hou S, Zhang F, Cao G, Chu M, Yang Y. Nitrogen-doped mesoporous carbon derived from biopolymer as electrode material for supercapacitors. J Electroanal Chem, 712, 146 (2014). http://dx.doi.org/10.1016/j.jelechem.2013.11.020. crossref(new window)

38.
Mehmani A, Prodanović M. The effect of microporosity on transport properties in porous media. Adv Water Resour, 63, 104 (2014). http://dx.doi.org/10.1016/j.advwatres.2013.10.009. crossref(new window)

39.
Zou L, Li L, Song H, Morris G. Using mesoporous carbon electrodes for brackish water desalination. Water Res, 42, 2340 (2008). http://dx.doi.org/10.1016/j.watres.2007.12.022. crossref(new window)