Advanced SearchSearch Tips
Effect of nickel on hydrogen storage behaviors of carbon aerogel hybrid
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 16, Issue 4,  2015, pp.281-285
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2015.16.4.281
 Title & Authors
Effect of nickel on hydrogen storage behaviors of carbon aerogel hybrid
Han, Ye-Ji; Park, Soo-Jin;
  PDF(new window)
carbon aerogels;nickel deposition;hydrogen storage;
 Cited by
Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications. Nature, 414, 353 (2001). crossref(new window)

Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science, 286, 1127 (1999). crossref(new window)

Kim BJ, Park SJ. Optimization of the pore structure of nickel/graphite hybrid materials for hydrogen storage. Int J Hydrogen Energy, 36, 648 (2011). crossref(new window)

Wang J, Senkovska I, Kaskel S, Liu Q. Chemically activated fungi-based porous carbons for hydrogen storage. Carbon, 75, 372 (2014). crossref(new window)

Im JS, Park SJ, Kim TJ, Kim YH, Lee YS. The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption. J Colloid Interface Sci, 318, 42 (2008). crossref(new window)

Zhu Y, Liu Z, Yang Y, Gu H, Li L, Cai M. Hydrogen storage properties of Mg-Ni-C system hydrogen storage materials prepared by hydriding combustion synthesis and mechanical milling. Int J Hydrogen Energy, 35, 6350 (2010). crossref(new window)

Kim BJ, Lee YS, Park SJ. Novel porous carbons synthesized from polymeric precursors for hydrogen storage. Int J Hydrogen Energy, 33, 2254 (2008). crossref(new window)

Silambarasan D, Surya VJ, Vasu V, Iyakutti K. Single walled carbon nanotube-metal oxide nanocomposites for reversible and reproducible storage of hydrogen. ACS Appl Mater Interfaces, 5, 11419 (2013). crossref(new window)

Kim BJ, Lee YS, Park SJ. A study on the hydrogen storage capacity of Ni-plated porous carbon nanofibers. Int J Hydrogen Energy, 33, 4112 (2008). crossref(new window)

Im JS, Kwon O, Kim YH, Park SJ, Lee YS. The effect of embedded vanadium catalyst on activated electrospun CFs for hydrogen storage. Microporous Mesoporous Mater, 115, 514 (2008). crossref(new window)

Brooks KP, Semelsberger TA, Simmons KL, van Hassel B. Slurry-based chemical hydrogen storage systems for automotive fuel cell applications. ACS Appl Mater Interfaces, 268, 950 (2014). crossref(new window)

Jung MJ, Kim JW, Im JS, Park SJ, Lee YS. Nitrogen and hydrogen adsorption of activated carbon fibers modified by fluorination. J Ind Eng Chem, 15, 410 (2009). crossref(new window)

Song MY, Kwak YJ, Lee SH, Park HR, Kim BG. Hydrogen-storage properties of MgH2-10Ni-2NaAlH4-2Ti prepared by reactive mechanical grinding. J Ind Eng Chem, 20, 1591 (2014). crossref(new window)

Fukuzumi S, Suenobu T. Hydrogen storage and evolution catalysed by metal hydride complexes. Dalton Trans, 42, 18 (2013). crossref(new window)

Dhand V, Prasad JS, Rhee KY, Anjaneyulu Y. Fabrication of high pressure hydrogen adsorption/desorption unit: adsorption study on flame synthesized carbon nanofibers. J Ind Eng Chem, 19, 944 (2013). crossref(new window)

Liu C, Chen Y, Wu CZ, Xu ST, Cheng HM. Hydrogen storage in carbon nanotubes revisited. Carbon, 48, 452 (2010). crossref(new window)

Lee SY, Park SJ. Comprehensive review on synthesis and adsorption behaviors of graphene-based materials. Carbon Lett, 13, 73 (2012). crossref(new window)

Cai J, Li L, Lv X, Yang C, Zhao X. Large surface area ordered porous carbons via nanocasting zeolite 10X and high performance for hydrogen storage application. ACS Appl Mater Interfaces, 6, 167 (2014). crossref(new window)

Park SJ, Lee SY. A study on hydrogen-storage behaviors of nickel-loaded mesoporous MCM-41. J Colloid Interface Sci, 346, 194 (2010). crossref(new window)

Klyamkin SM, Chuvikov SV, Maletskaya NV, Kogan EV, Fedin VP, Kovalenko KA, Dybtsev DN. High-pressure hydrogen storage on modified MIL-101 metal-organic framework. Int J Energy Res, 38, 1562 (2014). crossref(new window)

Sumida K, Stück D, Mino L, Chai JD, Bloch ED, Zavorotynska O, Murray LJ, Dincă M, Chavan S, Bordiga S, Head-Gordon M, Long JR. Impact of metal and anion substitutions on the hydrogen storage properties of M-BTT metal-organic frameworks. J Am Chem Soc, 135, 1083 (2013). crossref(new window)

Kim BJ, Lee YS, Park SJ. Preparation of platinum-decorated porous graphite nanofibers, and their hydrogen storage behaviors. J Colloid Interface Sci, 318, 530 (2008). crossref(new window)

He L, Melnichenko YB, Gallego NC, Contescu CI, Guo J, Bahadur J. Investigation of morphology and hydrogen adsorption capacity of disordered carbons. Carbon, 80, 82 (2014). crossref(new window)

Jasminská N, Brestovič T, Puškár M, Grega R, Rajzinger J, Korba J. Evaluation of hydrogen storage capacities on individual adsorbents. Measurement, 56, 219 (2014). crossref(new window)

Park SJ, Kim BJ, Lee YS, Cho MJ. Influence of copper electroplating on high pressure hydrogen-storage behaviors of activated carbon fibers. Int J Hydrogen Energy, 33, 1706 (2008). crossref(new window)

Roussel T, Pellenq RJM, Bienfait M, Vix-Guterl C, Gadiou R, Bé-guin F, Johnson M. Thermodynamic and neutron scattering study of hydrogen adsorption in two mesoporous ordered carbons. Langmuir, 22, 4614 (2006). crossref(new window)

Xia K, Gao Q, Wu C, Song S, Ruan M. Activation, characterization and hydrogen storage properties of the mesoporous carbon CMK-3. Carbon, 45, 1989 (2007). crossref(new window)

Vix-Guterl C, Frackowiak E, Jurewicz K, Friebe M, Parmentier J, Béguin F. Electrochemical energy storage in ordered porous carbon materials. Carbon, 43, 1293 (2005). crossref(new window)

Xia K, Gao Q, Song S, Wu C, Jiang J, Hu J, Gao L. CO2 activation of ordered porous carbon CMK-1 for hydrogen storage. Int J Hydrogen Energy, 33, 116 (2008). crossref(new window)

Kim BJ, Park SJ. Influence of surface treatments on micropore structure and hydrogen adsorption behavior of nanoporous carbons. J Colloid Interface Sci, 311, 619 (2007). crossref(new window)

Froudakis GE. Hydrogen interaction with single-walled carbon nanotubes: a combined quantum-mechanics/molecular-mechanics study. Nano Lett, 1, 179 (2001). crossref(new window)

Park SJ, Lee SY. Hydrogen storage behaviors of platinum-supported multi-walled carbon nanotubes. Int J Hydrogen Energy, 35, 13048 (2010). crossref(new window)

Wang L, Yang RT. New sorbents for hydrogen storage by hydrogen spillover: a review. Energy Environ Sci, 1, 268 (2008). crossref(new window)