Advanced SearchSearch Tips
A review: methane capture by nanoporous carbon materials for automobiles
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 17, Issue 1,  2016, pp.18-28
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2016.17.1.018
 Title & Authors
A review: methane capture by nanoporous carbon materials for automobiles
Choi, Pil-Seon; Jeong, Ji-Moon; Choi, Yong-Ki; Kim, Myung-Seok; Shin, Gi-Joo; Park, Soo-Jin;
  PDF(new window)
Global warming is considered one of the great challenges of the twenty-first century. In order to reduce the ever-increasing amount of methane (CH4) released into the atmosphere, and thus its impact on global climate change, CH4 storage technologies are attracting significant research interest. CH4 storage processes are attracting technological interest, and methane is being applied as an alternative fuel for vehicles. CH4 storage involves many technologies, among which, adsorption processes such as processes using porous adsorbents are regarded as an important green and economic technology. It is very important to develop highly efficient adsorbents to realize techno-economic systems for CH4 adsorption and storage. In this review, we summarize the nanomaterials being used for CH4 adsorption, which are divided into non-carbonaceous (e.g., zeolites, metal-organic frameworks, and porous polymers) and carbonaceous materials (e.g., activated carbons, ordered porous carbons, and activated carbon fibers), with a focus on recent research.
methane gas;methane storage;nanomaterial;porous material;carbon adsorbent;
 Cited by
Gallo M, Glossman-Mitnik D. Fuel gas storage and separations by metal-organic frameworks: simulated adsorption isotherms for H2 and CH4 and their equimolar mixture. J Phys Chem C, 113, 6634 (2009). crossref(new window)

Rackley SA. Carbon Capture and Storage. Butterworth-Heinemann/Elsevier, Boston (2010).

Hester RE, Harrison RM. Electronic Waste Management. RSC Publishing, Cambridge (2009).

Roosa SA, Ghaveri AG. Carbon Reduction: Policies, Strategies, and Technologies. Fairmont Press, Lilburn, GA (2009).

Wilson EJ, Gerard D. Carbon Capture and Sequestration: Integrating Technology, Monitoring and Regulation. Blackwell Publishing, Ames, IA (2007).

Yang J, Sudik A, Wolverton C, Siegel DJ. High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chem Soc Rev, 39, 656 (2010). crossref(new window)

Graetz J. New approaches to hydrogen storage. Chem Soc Rev, 38, 73 (2009). crossref(new window)

Murray LJ, Dincă M, Long JR. Hydrogen storage in metal: organic frameworks. Chem Soc Rev, 38, 1294 (2009). crossref(new window)

Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications. Nature, 414, 353 (2001). crossref(new window)

Lim KL, Kazemian H, Yaakob Z, Daud WRW. Solid-state materials and methods for hydrogen storage: a critical review. Chem Eng Technol, 33, 213 (2010). crossref(new window)

Getman RB, Bae YS, Wilmer CE, Snurr RQ. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. Chem Rev, 112, 703 (2012). crossref(new window)

Suh MP, Park HJ, Prasad TK, Lim DW. Hydrogen storage in metal–organic frameworks. Chem Rev, 112, 782 (2012). crossref(new window)

US Environmental Protection Agency. Inventory of U.S. greenhouse gas emissions and sinks: 1990-2007 (Report No. EPA 430-R-09-004), US Environmental Protection Agency, Washington, DC (2009).

Kayal S, Sun B, Chakraborty A. Study of metal-organic framework MIL-101 (Cr) for natural gas (methane) storage and compare with other MOFs (metal-organic frameworks). Energy, 91, 772 (2015). crossref(new window)

Menon VC, Komarneni S. Porous adsorbents for vehicular natural gas storage: a review. J Porous Mater, 5, 43 (1998). crossref(new window)

Collins DJ, Ma S, Zhou HC. Hydrogen and Methane Storage in Metal-Organic Frameworks. In: MacGillivray LR, ed. Metal-Organic Frameworks: Design and Application, John Wiley & Sons, Inc., Hoboken, NJ, 249 (2010).

Düren T, Sarkisov L, Yaghi OM, Snurr RQ. Design of new materials for methane storage. Langmuir, 20, 2683 (2004). crossref(new window)

Lin X, Champness NR, Schröder M. Hydrogen, methane and carbon dioxide adsorption in metal-organic framework materials. Top Curr Chem, 293, 35 (2010).

Ma S, Sun D, Simmons JM, Collier CD, Yuan D, Zhou HC. Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J Am Chem Soc, 130, 1012 (2008). 10.1021/ja0771639. crossref(new window)

Zhou W. Methane storage in porous metal-organic frameworks: current records and future perspectives. Chem Rec, 10, 200 (2010). crossref(new window)

Bousquet P, Ciais P, Miller JB, Dlugokencky EJ, Hauglustaine DA, Prigent C, Van der Werf GR, Peylin P, Brunke EG, Carouge C. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature, 443, 439 (2006). crossref(new window)

Zhou HC, Long JR, Yaghi OM. Introduction to metal-organic frameworks. Chem Rev, 112, 673 (2012). crossref(new window)

Bétard A, Fischer RA. Metal-organic framework thin films: from fundamentals to applications. Chem Rev, 112, 1055 (2012). crossref(new window)

O’Keeffe M, Yaghi OM. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem Rev, 112, 675 (2012). crossref(new window)

Yuan D, Lu W, Zhao D, Zhou HC. Highly stable porous polymer networks with exceptionally high gas-uptake capacities. Adv Mater, 23, 3723 (2011). crossref(new window)

Lin X, Telepeni I, Blake AJ, Dailly A, Brown CM, Simmons JM, Zoppi M, Walker GS, Thomas KM, Mays TJ, Hubberstey P, Champness NR, Schröder M. High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. J Am Chem Soc, 131, 2159 (2009). crossref(new window)

Yuan D, Zhao D, Sun D, Zhou HC. An isoreticular series of metal–organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew Chem Int Ed, 49, 5357 (2010). crossref(new window)

Kennett JP, Cannariato KG, Hendy IL, Behl RJ. Carbon isotopic evidence for methane hydrate instability during quaternary interstadials. Science, 288, 128 (2000). crossref(new window)

Yoo HM, Lee SY, Kim BJ, Park SJ. Influence of phosphoric acid treatment on hydrogen adsorption behaviors of activated carbons. Carbon Lett, 12, 112 (2011). crossref(new window)

Park SJ, Lee SY, Kim KS, Jin FL. A novel drying process for oil adsorption of expanded graphite. Carbon Lett, 14, 193 (2013). crossref(new window)

Jeon DH, Min BG, Oh JG, Nah C, Park SJ. Influence of nitrogen moieties on CO2 capture of carbon aerogel. Carbon Lett, 16, 57 (2015). crossref(new window)

Cho EA, Lee SY, Park SJ. Effect of microporosity on nitrogen-doped microporous carbons for electrode of supercapacitor. Carbon Lett, 15, 210 (2014). crossref(new window)

Park SJ, Jin SY. Effect of ozone treatment on ammonia removal of activated carbons. J Colloid Interface Sci, 286, 417 (2005). crossref(new window)

Meng LY, Park SJ. Effect of heat treatment on CO2 adsorption of KOH-activated graphite nanofibers. J Colloid Interface Sci, 352, 498 (2010). crossref(new window)

Park SJ, Park BJ, Ryu SK. Electrochemical treatment on activated carbon fibers for increasing the amount and rate of Cr(VI) adsorption. Carbon, 37, 1223 (1999). crossref(new window)

Park SJ, Jang YS. Pore structure and surface properties of chemically modified activated carbons for adsorption mechanism and rate of Cr(VI). J Colloid Interface Sci, 249, 458 (2002). crossref(new window)

Im JS, Park SJ, Kim TJ, Kim YH, Lee YS. The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption. J Colloid Interface Sci, 318, 42 (2008). crossref(new window)

Ma’mun S, Svendsen HF, Hoff KA, Juliussen O. Selection of new absorbents for carbon dioxide capture. Energy Convers Manag, 48, 251 (2007). crossref(new window)

Balsamo M, Budinova T, Erto A, Lancia A, Petrova B, Petrov N, Tsyntsarski B. CO2 adsorption onto synthetic activated carbon: kinetic, thermodynamic and regeneration studies. Sep Purif Technol, 116, 214 (2013). crossref(new window)

Cracknell RF, Gordon P, Gubbins KE. Influence of pore geometry on the design of microporous materials for methane storage. J Phys Chem, 97, 494 (1993). crossref(new window)

Kin KH, Baik KJ, Kim IW, Lee HK. Optimization of membrane process for methane recovery from biogas. Sep Sci Technol, 47, 963 (2012). crossref(new window)

Biloé S, Goetz V, Guillot A. Optimal design of an activated carbon for an adsorbed natural gas storage system. Carbon, 40, 1295 (2002). crossref(new window)

MacDonald JAF, Quinn DF. Carbon absorbents for natural gas storage. Fuel, 77, 61 (1998). crossref(new window)

Sun J, Rood MJ, Rostam-Abadi M, Lizzio AA. Natural gas storage with activated carbon from a bituminous coal. Gas Sep Purif, 10, 91 (1996). crossref(new window)

Sun J, Brady TA, Rood MJ, Lehmann CM, Rostam-Abadi M, Lizzio AA. Adsorbed natural gas storage with activated carbons made from Illinois coals and scrap tires. Energy Fuels, 11, 316 (1997). crossref(new window)

Pantatosaki E, Pazzona FG, Megariotis G, Papadopoulos GK. Atomistic simulation studies on the dynamics and thermodynamics of nonpolar molecules within the zeolite imidazolate framework-8. J Phys Chem B, 114, 2493 (2010). crossref(new window)

Morris RE, Wheatley PS. Gas storage in nanoporous materials. Angew Chem Int Ed, 47, 4966 (2008). crossref(new window)

Paraskeva P, Kalderis D, Diamadopoulos E. Production of activated carbon from agricultural by-products. J Chem Technol Biotechnol, 83, 581 (2008). crossref(new window)

Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science, 341, 6149 (2013).

Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AÖ, Snurr RQ, O’Keeffe M, Kim J, Yaghi OM. Ultrahigh porosity in metal-organic frameworks. Science, 329, 424 (2010). crossref(new window)

McDonald TM, D’Alessandro DM, Krishna R, Long JR. Enhanced carbon dioxide capture upon incorporation of N,N′-dimethylethylenediamine in the metal–organic framework CuBTTri. Chem Sci, 2, 2022 (2011). crossref(new window)

Bao Z, Yu L, Ren Q, Lu X, Deng S. Adsorption of CO2 and CH4 on a magnesium-based metal organic framework. J Colloid Interface Sci, 353, 549 (2011). crossref(new window)

Simmons JM, Wu H, Zhou W, Yildirim T. Carbon capture in metal-organic frameworks: a comparative study. Energy Environ Sci, 4, 2177 (2011). crossref(new window)

Caskey SR, Wong-Foy AG, Matzger AJ. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J Am Chem Soc, 130, 10870 (2008). crossref(new window)

Qin W, Cao W, Liu H, Li Z, Li Y. Metal-organic framework MIL-101 doped with palladium for toluene adsorption and hydrogen storage. RSC Adv, 4, 2414 (2014). crossref(new window)

Anbia M, Sheykhi S. Preparation of multi-walled carbon nanotube incorporated MIL-53-Cu composite metal-organic framework with enhanced methane sorption. J Ind Eng Chem, 19, 1583 (2013). crossref(new window)

Petit C, Bandosz TJ. MOF-graphite oxide nanocomposites: surface characterization and evaluation as adsorbents of ammonia. J Mater Chem, 19, 6521 (2009). crossref(new window)

Glover TG, Peterson GW, Schindler BJ, Britt D, Yaghi O. MOF-74 building unit has a direct impact on toxic gas adsorption. Chem Eng Sci, 66, 163 (2011). crossref(new window)

Liu YY, Leus K, Bogaerts T, Hemelsoet K, Bruneel E, Van Speybroeck V, Van Der Voort P. Bimetallic-organic framework as a zero-leaching catalyst in the aerobic oxidation of cyclohexene. ChemCatChem, 5, 3657 (2013). crossref(new window)

Jahan M, Liu Z, Loh KP. A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv Funct Mater, 23, 5363 (2013). crossref(new window)

Casco ME, Martínez-Escandell M, Gadea-Ramos E, Kaneko K, Silvestre-Albero J, Rodríguez-Reinoso F, High-Pressure Methane Storage in Porous Materials: Are Carbon Materials in the Pole Position? Chem Mater, 27, 959 (2015). 10.1021/cm5042524. crossref(new window)

Chen L, Honsho Y, Seki S, Jiang D. Light-harvesting conjugated microporous polymers: rapid and highly efficient flow of light energy with a porous polyphenylene framework as antenna. J Am Chem Soc, 132, 6742 (2010). crossref(new window)

Jiang JX, Wang C, Laybourn A, Hasell T, Clowes R, Khimyak YZ, Xiao J, Higgins SJ, Adams DJ, Cooper AI. Metal-organic conjugated microporous polymers. Angew Chem Int Ed, 50, 1072 (2011). crossref(new window)

Li A, Sun HX, Tan DZ, Fan WJ, Wen SH, Qing XJ, Li GX, Li SY, Deng WQ. Superhydrophobic conjugated microporous polymers for separation and adsorption. Energy Environ Sci, 4, 2062 (2011). crossref(new window)

Senkovska I, Kaskel S. High pressure methane adsorption in the metal-organic frameworks Cu3(btc)2, Zn2(bdc)2dabco, and Cr3F(H2O)2O(bdc)3. Microporous Mesoporous Mater, 112, 108 (2008). crossref(new window)

Chester AW, Derouane EG. Zeolite Characterization and Catalysis: A Tutorial. Springer, New York, NY (2009).

Chałupnik S, Franus W, Wysocka M, Gzyl G. Application of zeolites for radium removal from mine water. Environ Sci Pollut Res, 20, 7900 (2013). crossref(new window)

Yang R, Xu Z, Yang S, Michos I, Li LF, Angelopoulos AP, Dong J. Nonionic zeolite membrane as potential ion separator in redox-flow battery. J Membr Sci, 450, 12 (2014). crossref(new window)

Choi S, Drese JH, Jones CW. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem, 2, 796 (2009). crossref(new window)

Cavenati S, Grande CA, Rodrigues AE. Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J Chem Eng Data, 49, 1095 (2004). crossref(new window)

Saha D, Bao Z, Jia F, Deng S. Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and Zeolite 5A. Environ Sci Technol, 44, 1820 (2010). crossref(new window)

Yu L, Gong J, Zeng C, Zhang L. Synthesis of binderless zeolite X microspheres and their CO2 adsorption properties. Sep Purif Technol, 118, 188 (2013). crossref(new window)

Brandani F, Ruthven DM. The effect of water on the adsorption of CO2 and C3H8 on type X zeolites. Ind Eng Chem Res, 43, 8339 (2004). crossref(new window)

Li G, Xiao P, Webley P, Zhang J, Singh R, Marshall M. Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X. Adsorption, 14, 415 (2008). crossref(new window)

Grande CA, Blom R. Cryogenic adsorption of methane and carbon dioxide on zeolites 4A and 13X. Energy Fuels, 28, 6688 (2014). crossref(new window)

Sethia G, Somani RS, Bajaj HC. Sorption of methane and nitrogen on cesium exchanged zeolite-X: structure, cation position and adsorption relationship. Ind Eng Chem Res, 53, 6807 (2014). crossref(new window)

Park SJ, Kim KD. Adsorption behaviors of CO2 and NH3 on chemically surface-treated activated carbons. J Colloid Interface Sci, 212, 186 (1999). crossref(new window)

Seo MK, Park SJ. A kinetic study on the thermal degradation of multi-walled carbon nanotubes-reinforced poly(propylene) composites. Macromol Mater Eng, 289, 368 (2004). crossref(new window)

Bilalis P, Katsigiannopoulos D, Avgeropoulos A, Sakellariou G. Non-covalent functionalization of carbon nanotubes with polymers. RSC Adv, 4, 2911 (2014). crossref(new window)

Bai BC, Cho S, Yu HR, Yi KB, Kim KD, Lee YS. Effects of aminated carbon molecular sieves on breakthrough curve behavior in CO2/CH4 separation. J Ind Eng Chem, 19, 776 (2013). crossref(new window)

Park SJ, Kim BJ. Influence of oxygen plasma treatment on hydrogen chloride removal of activated carbon fibers. J Colloid Interface Sci, 275, 590 (2004). crossref(new window)

Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A, Quinn DF. Activated carbon monoliths for methane storage: influence of binder. Carbon, 40, 2817 (2002). crossref(new window)

Park SJ, Shin JS, Shim JW, Ryu SK. Effect of acidic treatment on metal adsorptions of pitch-based activated carbon fibers. J Colloid Interface Sci, 275, 342 (2004). crossref(new window)

Kim KS, Park SJ. Synthesis of nitrogen doped microporous carbons prepared by activation-free method and their high electrochemical performance. Electrochim Acta, 56, 10130 (2011). crossref(new window)

Park SJ, Jang YS, Shim JW, Ryu SK. Studies on pore structures and surface functional groups of pitch-based activated carbon fibers. J Colloid Interface Sci, 260, 259 (2003). crossref(new window)

Seo MK, Park SJ. Influence of air-oxidation on electric double layer capacitances of multi-walled carbon nanotube electrodes. Curr Appl Phys, 10, 241 (2010). crossref(new window)

Dreisbach F, Staudt R, Keller JU. High pressure adsorption data of methane, nitrogen, carbon dioxide and their binary and ternary mixtures on activated carbon. Adsorption, 5, 215 (1999). crossref(new window)

Jeong JM, Rhee KY, Park SJ. Effect of chemical treatments on lithium recovery process of activated carbons. J Ind Eng Chem, 27, 329 (2015). crossref(new window)

Bastos-Neto M, Torres AEB, Azevedo DCS, Cavalcante CL Jr. Methane adsorption storage using microporous carbons obtained from coconut shells. Adsorption, 11, 911 (2005). crossref(new window)

Sircar S, Golden TC, Rao MB. Activated carbon for gas separation and storage. Carbon, 34, 1 (1996). crossref(new window)

Liu J, Zhou Y, Sun Y, Su W, Zhou L. Methane storage in wet carbon of tailored pore sizes. Carbon, 49, 3731 (2011). crossref(new window)

Ma TY, Liu L, Yuan ZY. Direct synthesis of ordered mesoporous carbons. Chem Soc Rev, 42, 3977 (2013). crossref(new window)

Sakintuna B, Yurum Y. Templated porous carbons: a review article. Ind Eng Chem Res, 44, 2893 (2005). crossref(new window)

Lee SY, Kim BJ, Park SJ. Influence of KOH-activated graphite nanofibers on the electrochemical behavior of Pt-Ru nanoparticle catalysts for fuel cells. J Solid State Chem, 199, 258 (2013). crossref(new window)

Lee SY, Park SJ. Synthesis of zeolite-casted microporous carbons and their hydrogen storage capacity. J Colloid Interface Sci, 384, 116 (2012). crossref(new window)

Moradi SE. Microwave assisted preparation of sodium dodecyl sulphate (SDS) modified ordered nanoporous carbon and its adsorption for MB dye. J Ind Eng Chem, 20, 208 (2014). crossref(new window)

Ndamanisha JC, Guo L. Ordered mesoporous carbon for electrochemical sensing: a review. Anal Chim Acta, 747, 19 (2012). crossref(new window)

Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials. Adv Mater, 18, 2073 (2006). crossref(new window)

Ghimbeu CM, Le Meins JM, Zlotea C, Vidal L, Schrodj G, Latroche M, Vix-Guterl C. Controlled synthesis of NiCo nanoalloys embedded in ordered porous carbon by a novel soft-template strategy. Carbon, 67, 260 (2014). crossref(new window)