JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of nitrogen doping and hydrogen confinement on the electronic properties of a single walled carbon nanotube
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 17, Issue 1,  2016, pp.29-32
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2016.17.1.029
 Title & Authors
Effect of nitrogen doping and hydrogen confinement on the electronic properties of a single walled carbon nanotube
Bhat, Bashir Mohi Ud Din; Dar, Jehangir Rashid; Sen, Pratima;
  PDF(new window)
 Abstract
This paper addresses the effect of dopants on the electronic properties of zigzag (8, 0) semiconducting single walled carbon nanotubes (SWCNTs), using extended Hückel theory combined with nonequilibrium Green’s function formalism. Through appropriate dopant concentrations, the electronic properties of SWCNTs can be modified. Within this context, we present our ongoing investigation on (8, 0) SWCNTs doped with nitrogen. Quantum confinement effects on the electronic properties of the SWCNTs have also been investigated. The obtained results reveal that the electronic properties of SWCNTs are strongly dependent on the dopant concentration and modification of electronic structures by hydrogen confinement.
 Keywords
Nitrogen doping;Hydrogen confinement;Single walled carbon nanotube;
 Language
English
 Cited by
1.
Fluorination of single-walled carbon nanotube: The effects of fluorine on structural and electrical properties, Journal of Industrial and Engineering Chemistry, 2016, 37, 22  crossref(new windwow)
 References
1.
Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chem Rev, 106, 1105 (2006). http://dx.doi.org/10.1021/cr050569o. crossref(new window)

2.
Zhao YL, Stoddart JF. Noncovalent functionalization of single-walled carbon nanotubes. Acc Chem Res, 42, 1161 (2009). http://dx.doi.org/10.1021/ar900056z. crossref(new window)

3.
Khabashesku VN, Billups WE, Margrave JL. Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions. Acc Chem Res, 35, 1087 (2002). http://dx.doi.org/10.1021/ar020146y. crossref(new window)

4.
Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC. Chemistry of single-walled carbon nanotubes. Acc Chem Res, 35, 1105 (2002). http://dx.doi.org/10.1021/ar010155r. crossref(new window)

5.
Banerjee S, Hemraj-Benny T, Wong SS. Covalent surface chemistry of single-walled carbon nanotubes. Adv Mater, 17, 17 (2005). http://dx.doi.org/10.1002/adma.200401340. crossref(new window)

6.
Britz DA, Khlobystov AN. Noncovalent interactions of molecules with single walled carbon nanotubes. Chem Soc Rev, 35, 637 (2006). http://dx.doi.org/10.1039/b507451g. crossref(new window)

7.
Bezryadin A, Verschueren ARM, Tans SJ, Dekker C. Multiprobe transport experiments on individual single-wall carbon nanotubes. Phys Rev Lett, 80, 4036 (1998). http://dx.doi.org/10.1103/physrevlett.80.4036. crossref(new window)

8.
Kumar R, Kaur K, Lamba V, Engles D. Modeling the doping effect in carbon nanotubes for enhanced conductance. Proceedings of International Conference on Advanced Nanomaterials and Emerging Engineering Technologies, Chennai, 221 (2013). http://dx.doi.org/10.1109/icanmeet.2013.6609282.

9.
Kong J, Zhou C, Yenilmez E, Dai H. Alkaline metal-doped n-type semiconducting nanotubes as quantum dots. Appl Phys Lett, 77, 3977 (2000). http://dx.doi.org/10.1063/1.1331088. crossref(new window)

10.
Martel R, Schmidt T, Shea HR, Hertel T, Avouris P. Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett, 73, 2447 (1998). http://dx.doi.org/10.1063/1.122477. crossref(new window)

11.
Reed MA, Lee T. Molecular Nanoelectronics. American Scientific Publishers, Stevenson Ranch, CA (2003).

12.
Datta S. Nanoscale device modeling: the Green’s function method. Superlattices Microstruct, 28, 253 (2000). http://dx.doi.org/10.1006/spmi.2000.0920. crossref(new window)

13.
Kienle D, Bevan KH, Liang GC, Siddiqui L, Cerda JI, Ghosh AW. Extended Hückel theory for band structure, chemistry, and transport: II. Silicon. J Appl Phys, 100, 043715 (2006). http://dx.doi.org/10.1063/1.2259820. crossref(new window)

14.
Atomistix ToolKit version 13.8.1. Available from: www.quantumwise.com.

15.
Mowbray DJ, Morgan C, Thygesen KS. Influence of O2 and N2 on the conductivity of carbon nanotube networks. Phys Rev B, 79, 195431 (2009). http://dx.doi.org/10.1103/physrevb.79.195431. crossref(new window)

16.
Maeda Y, Kimura SI, Kanda M, Hirashima Y, Hasegawa T, Wakahara T, Lian Y, Nakahodo T, Tsuchiya T, Akasaka T, Lu J, Zhang X, Gao Z, Yu Y, Nagase S, Kazaoui S, Minami N, Shimizu T, Tokumoto H, Saito R. Large-scale separation of metallic and semiconducting single-walled carbon nanotubes. J Am Chem Soc, 127, 10287 (2005). http://dx.doi.org/10.1021/ja051774o. crossref(new window)