JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Flexural properties, interlaminar shear strength and morphology of phenolic matrix composites reinforced with xGnP-coated carbon fibers
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 17, Issue 1,  2016, pp.33-38
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2016.17.1.033
 Title & Authors
Flexural properties, interlaminar shear strength and morphology of phenolic matrix composites reinforced with xGnP-coated carbon fibers
Park, Jong Kyoo; Lee, Jae Yeol; Drzal, Lawrence T.; Cho, Donghwan;
  PDF(new window)
 Abstract
In the present study, exfoliated graphite nanoplatelets (xGnP) with different particle sizes were coated onto polyacrylonitrile-based carbon fibers by a direct coating method. The flexural properties, interlaminar shear strength, and the morphology of the xGnP-coated carbon fiber/phenolic matrix composites were investigated in terms of their longitudinal flexural strength and modulus, interlaminar shear strength, and by optical and scanning electron microscopic observations. The results were compared with a phenolic matrix composite counterpart prepared without xGnP. The flexural properties and interlaminar shear strength of the xGnP-coated carbon fiber/phenolic matrix composites were found to be higher than those of the uncoated composite. The flexural and interlaminar shear strengths were affected by the particle size of the xGnP, while the particle size had no significant effect on the flexural modulus. It seems that the interfacial contacts between the xGnP-coated carbon fibers and the phenolic matrix play a role in enhancing the flexural strength as well as the interlaminar shear strength of the composites.
 Keywords
carbon fiber composite;phenolic;exfoliated graphite nanoplatelet;flexural property;interlaminar shear strength;
 Language
English
 Cited by
1.
Phenylethynyl-terminated polyimide, exfoliated graphite nanoplatelets, and the composites: an overview, Carbon letters, 2016, 19, 1  crossref(new windwow)
 References
1.
Park SB, Lee MS, Park M. Study on lowering the percolation threshold of carbon nanotube-filled conductive polypropylene composites. Carbon Lett, 15, 117 (2014). crossref(new window)

2.
Li J, Kim JK, Sham ML. Conductive graphite nanoplatelet/epoxy nanocomposite: effects of exfoliation and UV/ozone treatment of graphite. Scr Mater, 53, 235 (2005). http://dx.doi.org/10.1016/j.scriptamat.2005.03.034. crossref(new window)

3.
Park SB, Lee MS, Park M. Study on lowering the percolation threshold of carbon nanotube-filled conductive polypropylene composites. Carbon Lett, 15, 117 (2014). http://dx.doi.org/10.5714/cl.2014.15.2.117. crossref(new window)

4.
Cho D, Lee S, Yang G, Fukushima H, Drzal LT. Dynamic mechanical and thermal properties of phenylethynyl-terminated polyimide composites reinforced with expanded graphite nanoplatelets. Macromol Mater Eng, 290, 179 (2005). http://dx.doi.org/10.1002/mame.200400281. crossref(new window)

5.
Bose S, Drzal LT. Functionalization of graphene nanoplatelets using sugar azide for graphene/epoxy nanocomposites. Carbon Lett, 16, 101 (2015). crossref(new window)

6.
Pan YX, Yu ZZ, Ou YC, Hu GH. A new process of fabricating electrically conducting nylon 6/graphite nanocomposites via intercalation polymerization. J Polym Sci B Polym Phys, 38, 1626 (2000). http://dx.doi.org/10.1002/(sici)1099-0488(20000615)38:12<1626::aid-polb80>3.0.co;2-r. crossref(new window)

7.
Chen GH, Wu DJ, Weng WG, Yan WL. Preparation of polymer/graphite conducting nanocomposite by intercalation polymerization. J Appl Polym Sci, 82, 2506 (2001). http://dx.doi.org/10.1002/app.2101. crossref(new window)

8.
Li J, Sham ML, Kim JK, Marom G. Morphology and properties of UV/ozone treated graphite nanoplatelet/epoxy nanocomposites. Compos Sci Technol, 67, 296 (2007). http://dx.doi.org/10.1016/j.compscitech.2006.08.009. crossref(new window)

9.
Kim KS, Park SJ. Bridge effect of carbon nanotubes on the electrical properties of expanded graphite/poly(ethylene terephthalate) nanocomposites. Carbon Lett, 13, 51 (2012). http://dx.doi.org/10.5714/cl.2012.13.1.051. crossref(new window)

10.
Kalaitzidou K, Fukushima H, Drzal LT. Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon, 45, 1446 (2007). http://dx.doi.org/10.1016/j.carbon.2007.03.029. crossref(new window)

11.
Fukushima H. Graphite Nanoreinforcements in Polymer Nanocomposites, Michigan State University, East Lansing, MI, PhD Thesis (2003).

12.
Joneja SK. Influence of matrix ductility on transverse fatigue and fracture toughness of glass reinforced composites. SAMPE Q, 15, 31 (1984).

13.
Christensen RM, Rinde JA. Transverse tensile characteristic of fiber composites with flexible resins: theory and test results. Polym Eng Sci, 19, 506 (1979). http://dx.doi.org/10.1002/pen.760190708. crossref(new window)

14.
Guigon M, Klinklin E. The interface and interphase in carbon fibre-reinforced composites. Composites, 25, 534 (1994). http://dx.doi.org/10.1016/0010-4361(94)90181-3. crossref(new window)

15.
Labronici M, Ishida H. Toughening composites by fiber coating: a review. Compos Interfaces, 2, 199 (1994).

16.
Blackketter DM, Upadhyaya D, King TR, King JA. Evaluation of fiber surfaces treatment and sizing on the shear and transverse tensile strengths of carbon fiber-reinforced thermoset and thermoplastic matrix composites. Polym Compos, 14, 430 (1993). ttp://dx.doi.org/10.1002/pc.750140510. crossref(new window)

17.
Lehmann S, Megerdigian C, Papalia R. Carbon fiber/resin matrix interphase: effect of carbon fiber surface treatment on composite performance. SAMPE Q, 16, 7 (1985).

18.
Vandeperre L, Van Der Biest O, Clegg WJ. Silicon carbide laminates with carbon interlayers by electrophoretic deposition. Key Eng Mater, 127-131, 567 (1997). http://dx.doi.org/10.4028/www.scientific.net/kem.127-131.567. crossref(new window)

19.
Girishkumar G, Vinodgopal K, Kamat PV. Carbon nanostructures in portable fuel cells: single-walled carbon nanotube electrodes for methanol oxidation and oxygen reduction. J Phys Chem B, 108, 19960 (2004). http://dx.doi.org/10.1021/jp046872v. crossref(new window)

20.
Drzal LT, Rich MJ, Lloyd PF. Adhesion of graphite fibers to epoxy matrices. I. The role of fiber surface treatment. J Adhes, 16, 1 (1983). http://dx.doi.org/10.1080/00218468308074901. crossref(new window)

21.
Han JT, Jang JI, Kim SH, Jeong SY, Jeong HJ, Lee GW. Size sorting of chemically modified graphene nanoplatelets. Carbon Lett, 14, 89 (2013). http://dx.doi.org/10.5714/cl.2013.14.2.089. crossref(new window)