Advanced SearchSearch Tips
One-step synthesis of dual-transition metal substitution on ionic liquid based N-doped mesoporous carbon for oxygen reduction reaction
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 17, Issue 1,  2016, pp.53-64
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2016.17.1.053
 Title & Authors
One-step synthesis of dual-transition metal substitution on ionic liquid based N-doped mesoporous carbon for oxygen reduction reaction
Byambasuren, Ulziidelger; Jeon, Yukwon; Altansukh, Dorjgotov; Ji, Yunseong; Shul, Yong-Gun;
  PDF(new window)
Nitrogen (N)-doped ordered mesoporous carbons (OMCs) with a dual transition metal system were synthesized as non-Pt catalysts for the ORR. The highly nitrogen doped OMCs were prepared by the precursor of ionic liquid (3-methyl-1-butylpyridine dicyanamide) for N/C species and a mesoporous silica template for the physical structure. Mostly, N-doped carbons are promoted by a single transition metal to improve catalytic activity for ORR in PEMFCs. In this study, our N-doped mesoporous carbons were promoted by the dual transition metals of iron and cobalt (Fe, Co), which were incorporated into the N-doped carbons lattice by subsequently heat treatments. All the prepared carbons were characterized by via transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). To evaluate the activities of synthesized doped carbons, linear sweep was recorded in an acidic solution to compare the ORR catalytic activities values for the use in the PEMFC system. The dual transition metal promotion improved the ORR activity compared with the single transition metal promotion, due to the increase in the quaternary nitrogen species from the structural change by the dual metals. The effect of different ratio of the dual metals into the N doped carbon were examined to evaluate the activities of the oxygen reduction reaction.
N-doped carbons;ordered mesoporous carbons (OMCs);Ionic liquid (IL);transition metal;Oxygen reduction reaction (ORR);
 Cited by
Cobalt-Based Active Species Molecularly Immobilized on Carbon Nanotubes for the Oxygen Reduction Reaction, ChemSusChem, 2017, 10, 17, 3473  crossref(new windwow)
Nallathambi V, Lee JW, Kumaraguru SP, Wu G, Popov BN. Development of high performance carbon composite catalyst for oxygen reduction reaction in PEM Proton Exchange Membrane fuel cells. J Power Sources, 183, 34-42, (2008). doi:10.1016/j.jpowsour.2008.05.020. crossref(new window)

Feng Y, Vante NA. Nonprecious metal catalysts for the molecular oxygen-reduction reaction. Phys Status Solidi B, 245, 1792-1806 (2008). doi: 10.1002/pssb.200879537. crossref(new window)

Chen Z, Higgins D, Yu A, Zhang L, Zhang J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ Sci, 4, 3167-3192 (2011). doi: 10.1039/C0EE00558D. crossref(new window)

Liu G, Li X, Ganesa P, Popov BN. Development of non-precious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon. Appl Catal B, 93, 156-165 (2009). doi:10.1016/j.apcatb.2009.09.025. crossref(new window)

Yang DS, Bhattacharjya D, Inamar S, Park JS, Yu JS. Phosphorus-Doped Ordered Mesoporous Carbons with Different Lengths as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media. J Am Chem Soc, 134, 16127-16130 (2012). doi: 10.1021/ja306376s. crossref(new window)

Liu ZW, Peng F, Wang HJ, Yu H, Zheng WX, Yang J. Phosphorus-Doped Graphite Layers with High Electrocatalytic Activity for the O2 Reduction in an Alkaline Medium. Angew Chem Int Ed, 50, 3257-3261 (2011). doi:10.1002/anie.201006768. crossref(new window)

Zhao X, Zhang Q, Zhang B, Chen CM, Wang A, Zhang T, Su DS. Dual-heteroatom-modified ordered mesoporous carbon: Hydrothermal functionalization, structure, and its electrochemical performance. J Mater Chem, 22, 4963-4969 (2012). doi: 10.1039/C2JM15820E. crossref(new window)

Li R, Wei Z, Gou X, Xu W. Phosphorus-doped graphene nanosheets as efficient metal-free oxygen reduction electrocatalysts. RSC Adv, 3, 9978-9984 (2013). doi:10.1039/C3RA41079J. crossref(new window)

Thomas A, Coettmann F, Antonietti M. Hard Templates for Soft Materials: Creating Nanostructured Organic Materials. Chem Mater, 20, 738-755 (2008). doi: 10.1021/cm702126j. crossref(new window)

Xia Y, Mokaya R. Synthesis of Ordered Mesoporous Carbon and Nitrogen-Doped Carbon Materials with Graphitic Pore Walls via a Simple Chemical Vapor Deposition Method. Adv Mater, 16, 1553-1558 (2004). doi:10.1002/adma.200400391. crossref(new window)

Xia Y, Moyaka R. Generalized and Facile Synthesis Approach to N-Doped Highly Graphitic Mesoporous Carbon Materials. Chem Mater, 17, 1553-1560 (2005). doi: 10.1021/cm048057y. crossref(new window)

Katie LH, Hansung K. Nitrogen-doped carbon catalysts derived from ionic liquids in the presence of transition metals for the oxygen reduction reaction. Appl Catal B, 158-159, 355-360 (2014). doi:10.1016/j.apcatb.2014.04.038. crossref(new window)

Paranowitsch JP, Zhang J, Su D, Thomas A, Antonietti M. Ionic Liquids as Precursors for Nitrogen-Doped Graphitic Carbon. Adv Mater, 22, 87-92 (2010). doi:10.1002/adma.200900965. crossref(new window)

Yang W, Fellinger TP, Antonietti M. Efficient Metal-Free Oxygen Reduction in Alkaline Medium on High-Surface-Area Mesoporous Nitrogen-Doped Carbons Made from Ionic Liquids and Nucleobases. J Am Chem Soc, 133, 206-209 (2011). doi:10.1021/ja108039j. crossref(new window)

Elumeeva K, Fechler N, Fellinger TP, Antonietti M. Metal-free ionic liquid-derived electrocatalyst for high-performance oxygen reduction in acidic and alkaline electrolytes. Mater Horiz, 82, 585-594 (2014). doi: 10.1039/C4MH00123K. crossref(new window)

Li Z, Li G, Jiang L, Li J, Sun G, Xia C, Li F. Ionic liquids as precursors for efficient mesoporous iron-nitrogen-doped oxygen reduction electrocatalysts. Angew Chem Int Ed, 54,1494-14986 (2015). doi: 10.1002/ange.201409579. crossref(new window)

Zhang Z, Veith GM, Brown GM, Fulvio PF, Hillesheim PC, Dai S, Overbury SH. Ionic liquid derived carbons as highly efficient oxygen reduction catalysts: first elucidation of pore size distribution dependent kinetics. Chem Commun, 50, 1469-1471 (2014). doi: 10.1039/C3CC48942F. crossref(new window)

Choi JY, Hsu R, Chen Z. Nanoporous Carbon-Supported Fe/Co-N Electrocatalyst for Oxygen Reduction Reaction in PEM Fuel Cells. ECS Trans, 28(23), 101-112 (2010). doi: 10.1149/1.3502342. crossref(new window)

Wu G, Chen Z, Artyushkova K, Garzon FH, Zelenay P. Polyaniline-derived Non Precious Catalyst for the Polymer Electrolyte Fuel Cell Cathode. ECS Trans, 16(2), 159- 170 (2008). doi:10.1149/1.2981852. crossref(new window)

Chean JY, Kim T, Choi YM, Jeong HY, Kim MG, Young JS, Kim J, Lee Z, Yang TH, Kwon K, Terasaki O, Park GG, Adzic RR, Joo SH. Ordered mesoporous porphyrinic carbons with very high electrocatalytic activity for the oxygen reduction reaction. Sci Rep, 3, 2715 (2013). doi:10.1038/srep02715. crossref(new window)

Chen R, Li H, Chu D, Wang G. Unraveling Oxygen Reduction Reaction Mechanisms on Carbon-Supported Fe-Phthalocyanine and Co-Phthalocyanine Catalysts in Alkaline Solutions. J Phys Chem C, 113, 20689-20697 (2009). doi: 10.1021/jp906408y. crossref(new window)

Zhang HJ, Yuan X, Sun L, Yang J, Ma ZF. Synthesis and characterization of non-precious metal binary catalyst for oxygen reduction reaction in proton exchange membrane fuel cells. Electrochim Acta, 77, 324-329 (2012). doi:10.1016/j.electacta.2012.06.011. crossref(new window)

Choi CH, Park SH, Woo SI. N-doped carbon prepared by pyrolysis of dicyandiamide with various MeCl2·xH2O (Me = Co, Fe, and Ni) composites: Effect of type and amount of metal seed on oxygen reduction reactions. Appl Catal B, 119-120, 123-131 (2012). doi:10.1016/j.apcatb.2012.02.031. crossref(new window)

Liu G, Li X, Canesan P, Popov BN. Studies of oxygen reduction reaction active sites and stability of nitrogen-modified carbon composite catalysts for PEM fuel cells. Electrochim Acta, 55, 2853-2858 (2010). doi:10.1016/j.electacta.2009.12.055. crossref(new window)

Gasteiger HA, Markovic NM. Just a Dream—or Future Reality? Science, 324, 48-49 (2009). doi:10.1126/science.1172083. crossref(new window)

Wu G, More Kl, Johnston CM, Zelenay P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science, 332, 443-447 (2011). doi:10.1126/science.1200832. crossref(new window)

Dorjgotov A, Ok JH, Jeon YW, Yoon SH, Shul YG. Nitrogen-doped ordered porous carbon catalyst for oxygen reduction reaction in proton exchange membrane fuel cells. J Solid State Electrochem, 17, 2567-2577 (2013). doi: 10.1007/s10008-013-2135-y. crossref(new window)

Can M, Akca B, Yilmaz A, Uner D. Synthesis and Characterization of Co-Pb/SBA-15 Mesoporous Catalysts. Turk J Phys, 29, 287-29 (2005).

ShaoY, Zhang S, Engelhand MH, Li G, Shao G, Wang Y, Liu J, Aksay IA, Lin Y. Nitrogen-doped graphene and its electrochemical applications. J Mater Chem, 20, 7491-7496 (2010). doi: 10.1039/C0JM00782J. crossref(new window)

Liang EJ, Ding P, Zhang HR, Guo XY, Du ZL. Synthesis and correlation study on the morphology and Raman spectra of CNx nanotubes by thermal decomposition of ferrocene/ethylenediamine. Diam Relat Mater, 13, 69-76 (2004). doi:10.1016/j.diamond.2003.08.025. crossref(new window)

Ikeda T, Boero M, Huang SF, Terakura K, Oshima M, Ozaki JI. Carbon Alloy Catalysts: Active Sites for Oxygen Reduction Reaction. J Phys Chem C, 112, 14706-14709 (2008). doi: 10.1021/jp806084d crossref(new window)

Matter PH, Wang E, Arias M, Biddinger EJ, Ozkan US. Oxygen reduction reaction catalysts prepared from acetonitrile pyrolysis over alumina-supported metal particles. J Phys Chem B, 110, 18374-18384 (2006). doi: 10.1021/jp062206d. crossref(new window)

Dorjgotov A, Ok JH, Jeon YW, Yoon SH, Shul YG. Activity and active sites of nitrogen-doped carbon nanotubes for oxygen reduction reaction. J Appl Electrochem, 43, 387-397 (2013). doi:10.1007/s10800-012-0523-0. crossref(new window)

Yeager E. Electrocatalysts for O2 Reduction. Electrochim Acta, 29, 1527-1537 (1984). doi:10.1016/0013-4686(84)85006-9. crossref(new window)

Wieser K. N4-chelates as electrocatalyst for cathodic oxygen reduction. Electrochim Acta, 31, 1073-1078 (1986). doi: 10.1016/0013-4686(86)80022-6. crossref(new window)

Okada T, Katou K, Hirose T, Yuasa M, Sekine I. Oxygen Reduction on Pyrolytic Graphite Electrodes Modified with Electropolymerized Cobalt Salen Compounds. J Electrochem Soc, 146, 2562-2568 (1999). doi: 10.1149/1.1391972. crossref(new window)

Torres J, Perry CC, Bransfield SJ, Fairbrother DH. Low-Temperature Oxidation of Nitrided Iron Surfaces. J Phys Chem B, 107, 5558-5567 (2003). doi:10.1021/jp027802w. crossref(new window)

Zielke U, Huttinger KJ, Hoffman WP. Surface-oxidized carbon fibers: I. Surface structure and chemistry. Carbon, 34, 983-998 (1996). doi:10.1016/0008-6223(96)00032-2. crossref(new window)