JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Cu nanoparticle-embedded carbon foams with improved compressive strength and thermal conductivity
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 17, Issue 1,  2016, pp.65-69
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2016.17.1.065
 Title & Authors
Cu nanoparticle-embedded carbon foams with improved compressive strength and thermal conductivity
Kim, Ji-Hyun; Kim, Kyung Hoon; Park, Mi-Seon; Bae, Tae-Sung; Lee, Young-Seak;
  PDF(new window)
 Keywords
pitch;nanoparticle;carbon foam;thermal conductivity;compressive strength;
 Language
English
 Cited by
 References
1.
Calvo M, García R, Arenillas A, Suárez I, Moinelo SR. Carbon foams from coals: a preliminary study. Fuel, 84, 2184 (2005). http://dx.doi.org/10.1016/j.fuel.2005.06.008. crossref(new window)

2.
Liu H, Li T, Wang X, Zhang W, Zhao T. Preparation and characterization of carbon foams with high mechanical strength using modified coal tar pitches. J Anal Appl Pyrolysis, 110, 442 (2014). http://dx.doi.org/10.1016/j.jaap.2014.10.015. crossref(new window)

3.
Park MS, Lee SE, Kim MI, Lee YS. CO2 adsorption characteristics of slit-pore shaped activated carbon prepared from cokes with high crystallinity. Carbon Lett, 16, 45 (2015). http://dx.doi.org/10.5714/CL.2015.16.1.045. crossref(new window)

4.
Sanchez-Coronado J, Chung DDL. Thermomechanical behavior of a graphite foam. Carbon, 41, 1175 (2003). http://dx.doi.org/10.1016/s0008-6223(03)00025-3. crossref(new window)

5.
Singh M, Asthana R, Smith CE, Gyekenyesi AL. Integration of Cu-clad-Mo to high conductivity graphite foams. Curr Appl Phys, 12, S116 (2012). http://dx.doi.org/10.1016/j.cap.2012.02.033. crossref(new window)

6.
Choi JY, Park SJ. Effect of manganese dioxide on supercapacitive behaviors of petroleum pitch-based carbons. J Ind Eng Chem, 29, 408 (2015). http://dx.doi.org/10.1016/j.jiec.2015.04.022. crossref(new window)

7.
Johnson MT, Childers AS, Ramírez-Rico J, Wang H, Faber KT. Thermal conductivity of wood-derived graphite and copper-graphite composites produced via electrodeposition. Compos Part A Appl Sci Manuf, 53, 182 (2013). http://dx.doi.org/10.1016/j.compositesa. 2013.06.009. crossref(new window)

8.
Zhai L, Liu X, Li T, Feng Z, Fan Z. Vacuum and ultrasonic coassisted electroless copper plating on carbon foams. Vacuum, 114, 21 (2015). http://dx.doi.org/10.1016/j.vacuum.2014.12.005. crossref(new window)

9.
Isani G, Falcioni ML, Barucca G, Sekar D, Andreani G, Carpenè E, Falcioni G. Comparative toxicity of CuO nanoparticles and CuSO4 in rainbow trout. Ecotoxicol Environ Saf, 97, 40 (2013). http://dx.doi.org/10.1016/j.ecoenv.2013.07.001. crossref(new window)

10.
Mishra A, Dwivedi J, Shukla K, Malviya P. X-Ray diffraction and Fourier transformation infrared spectroscopy studies of copper (II) thiourea chloro and sulphate complexes. J Phys Conf Ser, 534, 012014 (2014). http://dx.doi.org/10.1088/1742-6596/534/1/012014. crossref(new window)

11.
Han MS, Lee BG, Ahn BS, Moon DJ, Hong SI. Surface properties of CuCl2/AC catalysts with various Cu contents: XRD, SEM, TG/DSC and Co-TPD analyses. Appl Surf Sci, 211, 76 (2003). http://dx.doi.org/10.1016/S0169-4332(03)00177-6. crossref(new window)

12.
Schrank C, Schwarz B, Eisenmenger-Sittner C, Mayerhofer K, Neubauer E. Influence of thermal treatment on the adhesion of copper coatings on carbon substrates. Vacuum, 80, 122 (2005). http://dx.doi.org/10.1016/j.vacuum.2005.07.031. crossref(new window)

13.
Bittencourt C, Ke X, Van Tendeloo G, Thiess S, Drube W, Ghijsen J, Ewels CP. Study of the interaction between copper and carbon nanotubes. Chem Phys Lett, 535, 80 (2012). http://dx.doi.org/10.1016/j.cplett.2012.03.045. crossref(new window)

14.
Guo R, Zhen W, Pan W, Zhou Y, Hong J, Xu H, Jin Q, Ding CG, Guo SY. Effect of Cu doping on the SCR activity of CeO2 catalyst prepared by citric acid method. J Ind Eng Chem, 20, 1577 (2014). http://dx.doi.org/10.1016/j.jiec.2013.07.051. crossref(new window)

15.
Thouchprasitchai N, Luengnaruemitchai A, Pongstabodee S. Water-gas shift reaction over Cu–Zn, Cu–Fe, and Cu–Zn–Fe composite-oxide catalysts prepared by urea-nitrate combustion. J Ind Eng Chem, 19, 1483 (2013). http://dx.doi.org/10.1016/j.jiec.2013.01.012. crossref(new window)

16.
Zhao Z, Wang X, Qiu J, Lin J, Xu D, Zhang C, Lv M, Yang X. Three-dimentional graphene-based hydrogel/aerogel materials. Rev Adv Mater Sci, 36, 137 (2014).

17.
Xu Y, Sheng K, Li C, Shi G. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano, 4, 4324 (2010). http://dx.doi.org/10.1021/nn101187z. crossref(new window)

18.
Hu H, Zhao Z, Gogotsi Y, Qiu J. Compressible carbon nanotube-graphene hybrid aerogels with superhydrophobicity and superoleophilicity for oil sorption. Environ Sci Technol Lett, 1, 214 (2014). http://dx.doi.org/10.1021/ez500021w. crossref(new window)

19.
Almajali M, Lafdi K, Prodhomme PH, Ochoa O. Mechanical properties of copper-coated carbon foams. Carbon, 48, 1604 (2010). http://dx.doi.org/10.1016/j.carbon.2009.12.060. crossref(new window)

20.
Lafdi K, Almajali M, Huzayyin O. Thermal properties of coppercoated carbon foams. Carbon, 47, 2620 (2009). http://dx.doi.org/10.1016/j.carbon.2009.05.014. crossref(new window)

21.
Kumar R, Kumari S, Dhakate SR. Nickel nanoparticles embedded in carbon foam for improving electromagnetic shielding effectiveness. Appl Nanosci, 5, 553 (2015). http://dx.doi.org/10.1007/s13204-014-0349-7. crossref(new window)

22.
James L, Austin S, Moore CA, Stephens D, Walsh KK, Dale Wesson G. Modeling the principle physical parameters of graphite carbon foam. Carbon, 48, 2418 (2010). http://dx.doi.org/10.1016/j.carbon.2010.02.043. crossref(new window)

23.
Warrier P, Teja A. Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles. Nanoscale Res Lett, 6, 247 (2011). http://dx.doi.org/10.1186/1556-276X-6-247. crossref(new window)