Advanced SearchSearch Tips
Ion conducting properties of imidazolium salts with tri-alkyl chains in organic electrolytes against activated carbon electrodes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 17, Issue 1,  2016, pp.70-73
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2016.17.1.070
 Title & Authors
Ion conducting properties of imidazolium salts with tri-alkyl chains in organic electrolytes against activated carbon electrodes
Kim, Kyungmin; Park, Soo-Jin; Im, Ji Sun; Lee, Chul Wee; Jung, Yongju; Kim, Seok;
  PDF(new window)
imidazolium;ionic liquids;organic electrolyte;conducting property;capacitors;
 Cited by
Gao ZH, Zhang H, Cao GP, Han MF, Yang YS. Spherical porous VN and NiOx as electrode materials for asymmetric supercapacitor. Electrochim Acta, 87, 375 (2013). crossref(new window)

Anouti M, Couadou E, Timperman L, Galiano H. Protic ionic liquid as electrolyte for high-densities electrochemical double layer capacitors with activated carbon electrode material. Electrochim Acta, 64, 110 (2012). 2011.12.120. crossref(new window)

Oh M, Kim S. Synthesis and electrochemical analysis of polyaniline/TiO2 composites prepared with various molar ratios between aniline monomer and para-toluenesulfonic acid. Electrochim Acta, 78, 279 (2012). crossref(new window)

Kim MG, Kim K, Kim S. Conducting and interface characterization of carbonate-type organic electrolytes containing EMImBF4 as an additive against activated carbon electrode, Carbon Letters, 16, 51 (2015) DOI: crossref(new window)

Lota G, Grzyb B, Machnikowska H, Machnikowski J, Frackowiak E. Effect of nitrogen in carbon electrode on the supercapacitor performance. Chem Phys Lett, 404, 53 (2005). crossref(new window)

Kim K, Jung Y, Kim S. Influence of ionic liquid additives on the conducting and interfacial properties of organic solvent-based electrolytes against an activated carbon electrode, Carbon Letters, 15, 187 (2014) DOI: crossref(new window)

Oh M, Park SJ, Jung Y, Kim S. Electrochemical properties of polyaniline composite electrodes prepared by in-situ polymerization in titanium dioxide dispersed aqueous solution. Synth Met, 162, 695 (2012). crossref(new window)

Kim M, Kim S. Electrochemical properties of non-aqueous electrolytes containing spiro-type ammonium salts. J Ind Eng Chem, 20, 4447 (2014). crossref(new window)

Burke A. R&D considerations for the performance and application of electrochemical capacitors. Electrochim Acta, 53, 1083 (2007). crossref(new window)

Kim M, Kim IJ, Yang S, Kim S. Fluoroethylene carbonate addition effect on electrochemical properties of mixed carbonate-based organic electrolyte solution for a capacitor. Bull Korean Chem Soc, 35, 466 (2014). crossref(new window)

Wilkes JS, Zaworotko MJ. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc Chem Commun, (13), 965 (1992). crossref(new window)

Paul A, Mandal PK, Samanta A. How transparent are the imidazolium ionic liquids? A case study with 1-methyl-3-butylimidazolium hexafluorophosphate, [bmim][PF6]. Chem Phys Lett, 402, 375 (2005). crossref(new window)

Bonhôte P, Dias AP, Papageorgiou N, Kalyanasundaram K, Grätzel M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem, 35, 1168 (1996). crossref(new window)

Brandt A, Balducci A. Theoretical and practical energy limitations of organic and ionic liquid-based electrolytes for high voltage electrochemical double layer capacitors. J Power Sources, 250, 343 (2014). crossref(new window)

Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem Rev, 99, 2071 (1999). crossref(new window)

Kim K, Kim S. Effect of alkyl-chain length of imidazolium based ionic liquid on ion conducting and interfacial properties of organic electrolytes. J Ind Eng Chem, 26, 136 (2015). crossref(new window)

Andriyko YO, Reischl W, Nauer GE. Trialkyl-substituted imidazolium-based ionic liquids for electrochemical applications: basic physicochemical properties. J Chem Eng Data, 54, 855 (2009). crossref(new window)

Yuan CZ, Gao BO, Zhang XG. Electrochemical capacitance of NiO/Ru0.35V0.65O2 asymmetric electrochemical capacitor. J Power Sources, 173, 606 (2007). 2007.04.034. crossref(new window)

Yu D, Dai L. Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett, 1, 467 (2010). crossref(new window)

Kang J, Wen J, Jayaram SH, Yu A, Wang X. Development of an equivalent circuit model for electrochemical double layer capacitors (EDLCs) with distinct electrolytes. Electrochim Acta, 115, 587 (2014). crossref(new window)

Lane GH. Electrochemical reduction mechanisms and stabilities of some cation types used in ionic liquids and other organic salts. Electrochim Acta, 83, 513 (2012). crossref(new window)

Hunt PA. Why does a reduction in hydrogen bonding lead to an increase in viscosity for the 1-butyl-2,3-dimethyl-imidazolium-based ionic liquids? J Phys Chem B, 111, 4844 (2007). crossref(new window)