Advanced SearchSearch Tips
Effects of an inorganic ammonium salt treatment on the flame-retardant performance of lyocell fibers
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 17, Issue 1,  2016, pp.74-78
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2016.17.1.074
 Title & Authors
Effects of an inorganic ammonium salt treatment on the flame-retardant performance of lyocell fibers
Kim, Hyeong Gi; Bai, Byong Chol; In, Se Jin; Lee, Young-Seak;
  PDF(new window)
lyocell fibers;flame-retardant;catalyst;thermogravimetric analysis;limiting oxygen index;
 Cited by
Durable flame retardant cellulosic fibers modified with novel, facile and efficient phytic acid-based finishing agent, Cellulose, 2017, 1572-882X  crossref(new windwow)
Loubinoux D, Chaunis S. An experimental approach to spinning new cellulose fibers with N-methylmorpholine-oxide as a solvent. Text Res J, 57, 61 (1987). crossref(new window)

Plaisantin H, Pailler R, Guette A, Daudé G, Pétraud M, Barbe B, Birot M, Pillot JP, Olry P. Conversion of cellulosic fibers into carbon fibers: a study of the mechanical properties and correlation with chemical structure. Compo Sci Technol, 61, 2063 (2001). crossref(new window)

Sekiguchi Y, Shafizadeh F. The effect of inorganic additives on the formation, composition, and combustion of cellulosic char. J Appl Polym Sci, 29, 1267 (1984). crossref(new window)

Tang MM, Bacon R. Carbonization of cellulose fibers: 1. Low temperature pyrolysis. Carbon, 2, 211 (1964). crossref(new window)

Wu QL, Gu SY, Gong JH, Pan D. SEM/STM studies on the surface structure of a novel carbon fiber from lyocell. Synth Met, 156, 792 (2006). crossref(new window)

Kandola BK, Horrocks AR. Complex char formation in flame-retarded fibre-intumescent combinations: II. Thermal analytical studies. Polym Degrad Stab, 54, 289 (1996). crossref(new window)

Kandola BK, Horrocks AR, Price D, Coleman GV. Flame-retardant treatments of cellulose and their influence on the mechanism of cellulose pyrolysis. J Macromol Sci Polym Rev, 36, 721 (1996). crossref(new window)

Li H, Yang Y, Wen Y, Liu L. A mechanism study on preparation of rayon based carbon fibers with (NH4)2SO4/NH4Cl/organosilicon composite catalyst system. Compo Sci Technol, 67, 2675 (2007). crossref(new window)

Park MS, Ko YY, Jung MJ, Lee YS. Stabilization of pitch-based carbon fibers accompanying electron beam irradiation and their mechanical properties. Carbon Lett, 16, 121 (2015). crossref(new window)

Nam S, Condon BD, Parikh DV, Zhao Q, Cintrón MS, Madison C. Effect of urea additive on the thermal decomposition of greige cotton nonwoven fabric treated with diammonium phosphate. Polym Degrad Stab, 96, 2010 (2011). 2011.08.014. crossref(new window)

Sponton M, Mercado LA, Ronda JC, Galia M, Cadiz V. Preparation, thermal properties and flame retardancy of phosphorus- and silicon-containing epoxy resins. Polym Degrad Stab, 93, 2025 (2008). crossref(new window)

Wang J, Xie H, Xin Z, Li Y, Chen L. Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers. Sol Energy, 84, 339 (2010). crossref(new window)

Hostler SR, Abramson AR, Gawryla MD, Bandi SA, Schiraldi DA. Thermal conductivity of a clay-based aerogel. Int J Heat Mass Transfer, 52, 665 (2009). crossref(new window)

Guo B, Jia D, Cai C. Effects of organo-montmorillonite dispersion on thermal stability of epoxy resin nanocomposites. Eur Polym J, 40, 1743 (2004). crossref(new window)

Li XG. High-resolution thermogravimetry of cellulose esters. J Appl Polym Sci, 71, 573 (1999).<573::aid-app8>;2-r. crossref(new window)