Advanced SearchSearch Tips
Preparation and characterization of chemically activated carbon materials for CO2 capture
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 17, Issue 1,  2016, pp.85-89
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2016.17.1.085
 Title & Authors
Preparation and characterization of chemically activated carbon materials for CO2 capture
Jeon, Da-Hee; Bae, Shin-Tae; Park, Soo-Jin;
  PDF(new window)
Activated carbons;CO2 capture;KOH activation;Indoor CO2 capture;
 Cited by
Effect of Halide Impregnation on Elemental Mercury Removal of Activated Carbons, Bulletin of the Korean Chemical Society, 2017, 38, 2, 191  crossref(new windwow)
Lastoskie C. Caging carbon dioxide. Science, 330, 595 (2010). crossref(new window)

Keith DW. Why capture CO2 from the atmosphere? Science, 325, 1654 (2009). crossref(new window)

Chaffee AL, Knowles GP, Liang Z, Zhany J, Xiao P, Webley PA. CO2 capture by adsorption: materials and process development. Int J Greenhouse Gas Control, 1, 11 (2007). crossref(new window)

Jacobson MZ. Review of solutions to global warming, air pollution, and energy security. Energy Environ Sci, 2, 148 (2009). crossref(new window)

Zhao J, Yang X. Photocatalytic oxidation for indoor air purification: a literature review. Build Environ, 38, 645 (2003). crossref(new window)

Daisey JM, Angell WJ, Apte MG. Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information. Indoor Air, 13, 53 (2003). crossref(new window)

Li JR, Ma Y, McCarthy MC, Sculley J, Yu J, Jeong HK, Balbuena PB, Zhou HC. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord Chem Rev, 255, 1791 (2011). crossref(new window)

Meng LY, Park SJ. Effect of exfoliation temperature on carbon dioxide capture of graphene nanoplates. J Colloid Interface Sci, 386, 285 (2012). crossref(new window)

Rao AB, Rubin ES. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ Sci Technol, 36, 4467 (2002). crossref(new window)

Bae YS, Snurr RQ. Development and evaluation of porous materials for carbon dioxide separation and capture. Angew Chem Int Edit, 50, 11586 (2011). crossref(new window)

Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi OM. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science, 319, 939 (2008). crossref(new window)

Simmons JM, Wu H, Zhou W, Yildirim T. Carbon capture in metal-organic frameworks-a comparative study. Energy Environ Sci, 4, 2177 (2011). crossref(new window)

Park SJ, Kim KD. Adsorption behaviors of CO2 and NH3 on chemically surface-treated activated carbons. J Colloid Interface Sci, 212, 186 (1999). crossref(new window)

Lee SY, Park SJ. Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers. J Colloid Interface Sci, 389, 230 (2013). crossref(new window)

Hughes RW, Lu DY, Anthony EJ, Macchi A. Design, process simulation and construction of an atmospheric dual fluidized bed combustion system for in situ CO2 capture using high-temperature sorbents. Fuel Process Technol, 86, 1523 (2005). crossref(new window)

Meng LY, Park SJ. Effect of heat treatment on CO2 adsorption of KOH-activated graphite nanofibers. J Colloid Interface Sci, 352, 498 (2010). crossref(new window)

Meng LY, Park SJ. Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications. Carbon Lett, 15, 89 (2014). crossref(new window)

Meng LY, Park SJ. Effect of nano-silica spheres template on CO2 capture of exchange resin-based nanoporous carbons. J Nanosci Nanotechnol, 13, 401 (2013). crossref(new window)

Park SJ, Jang YS, Shim JW, Ryu SK. Studies on pore structures and surface functional groups of pitch-based activated carbon fibers. J Colloid Interface Sci, 260, 259 (2003). crossref(new window)

Presser V, McDonough J, Yeon SH, Gogotsi Y. Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energ Environ Sci, 4, 3059 (2011). crossref(new window)

Yoo HM, Lee SY, Park SJ. Ordered nanoporous carbon for increasing CO2 capture. J Solid State Chem, 197, 361 (2013). crossref(new window)

Garcia-Gallastegui A, Iruretagoyena D, Gouvea V, Mokhtar M, Asiri AM, Basahel SN, Al-Thabaiti SA, Alyoubi AO, Chadwick D, Shaffer MSP. Graphene oxide as support for layered double hydroxides: enhancing the CO2 adsorption capacity. Chem Mater, 24, 4531 (2012). crossref(new window)

Siriwardane RV, Shen MS, Fisher EP, Poston JA. Adsorption of CO2 on molecular sieves and activated carbon. Energy Fuels, 15, 279 (2001). crossref(new window)

Kim BJ, Lee YS, Park SJ. Novel porous carbons synthesized from polymeric precursors for hydrogen storage. Int J Hydrogen Energ, 33, 2254 (2008). crossref(new window)

Im JS, Park SJ, Lee YS. Preparation and characteristics of electrospun activated carbon materials having meso- and macropores. J Colloid Interface Sci, 314, 32 (2007). crossref(new window)

Park SJ, Jang YS. Pore structure and surface properties of chemically modified activated carbons for adsorption mechanism and rate of Cr(VI). J Colloid Interface Sci, 249, 458 (2002). crossref(new window)

Park SJ, Jin SY. Effect of ozone treatment on ammonia removal of activated carbons. J Colloid Interface Sci, 286, 417 (2005). crossref(new window)

Frackowiak E, Béguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 39, 937 (2001). crossref(new window)

Ahmadpour A, Do DD. The preparation of active carbons from coal by chemical and physical activation. Carbon, 34, 471 (1996). crossref(new window)

Martín-Jimeno FJ, Suárez-García F, Paredes JI, Martínez-Alonso A, Tascón JMD. Activated carbon xerogels with a cellular morphology derived from hydrothermally carbonized glucose-graphene oxide hybrids and their performance towards CO2 and dye adsorption. Carbon, 81, 137 (2015). crossref(new window)

Hayashi J, Kazehaya A, Muroyama K, Watkinson AP. Preparation of activated carbon from lignin by chemical activation. Carbon, 38, 1873 (2000). crossref(new window)

Mohammadi SZ, Hamidian H, Moeinadini Z. High surface area-activated carbon from Glycyrrhiza glabra residue by ZnCl2 activation for removal of Pb(II) and Ni(II) from water samples. J Ind Eng Chem, 20, 4112 (2014). crossref(new window)

Martins AC, Pezoti O, Cazetta AL, Bedin KC, Yamazaki DAS, Bandoch GFG, Asefa T, Visentainer JV, Almeida VC. Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: kinetic and equilibrium studies. Chem Eng J, 260, 291 (2015). crossref(new window)

Lillo-Ródenas MA, Cazorla-Amorós D, Linares-Solano A. Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism. Carbon, 41, 267 (2003). crossref(new window)

Jung MJ, Jeong E, Kim Y, Lee YS. Influence of the textual properties of activated carbon nanofibers on the performance of electric double-layer capacitors. J Ind Eng Chem, 19, 1315 (2013). crossref(new window)