Advanced SearchSearch Tips
A review: role of interfacial adhesion between carbon blacks and elastomeric materials
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 18, Issue ,  2016, pp.1-10
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2016.18.001
 Title & Authors
A review: role of interfacial adhesion between carbon blacks and elastomeric materials
Kang, Min-Joo; Heo, Young-Jung; Jin, Fan-Long; Park, Soo-Jin;
  PDF(new window)
Carbon blacks (CBs) have been widely used as reinforcing materials in advanced rubber composites. The mechanical properties of CB-reinforced rubber composites are mostly controlled by the extent of interfacial adhesion between the CBs and the rubber. Surface treatments are generally performed on CBs to introduce chemical functional groups on its surface. In this study, we review the effects of various surface treatment methods for CBs. In addition, the preparation and properties of CB-reinforced rubber composites are discussed.
rubber;carbon blacks;surface treatments;interfacial adhesion;
 Cited by
Hosler D, Burkett SL, Tarkanian MJ. Prehistoric polymers: rubber processing in ancient mesoamerica. Science, 284, 1988 (1999). crossref(new window)

Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature, 451, 977 (2008). crossref(new window)

Gogotsi Y. High-temperature rubber made from carbon nanotubes. Science, 330, 1332 (2010). crossref(new window)

Ulfah IM, Fidyaningsih R, Rahayu S, Fitriani DA, Saputra DA, Winarto DA, Wisojodharmo LA. Influence of carbon black and silica filler on the rheological and mechanical properties of natural rubber compound. Procedia Chem, 16, 258 (2015). crossref(new window)

Woo CS, Park HS. Mechanical properties evaluation of natural and synthetic rubber. Elastomers Compos, 42, 32 (2007).

Thongsang S, Vorakhan W, Wimolmala E, Sombatsompop N. Dynamic mechanical analysis and tribological properties of NR vulcanizates with fly ash/precipitated silica hybrid filler. Tribol Int, 53, 134 (2012). crossref(new window)

Hassan HH, Ateia E, Darwish NA, Halim SF, El-Aziz AKA. Effect of filler concentration on the physico-mechanical properties of super abrasion furnace black and silica loaded styrene butadiene rubber. Mater Des, 34, 533 (2012). crossref(new window)

Domenech SC, Bendo L, Mattos DJS, Borges NG Jr, Zucolotto V, Mattoso LHC, Soldi V. Elastomeric composites based on ethylene-propylene-diene monomer rubber and conducting polymer-modified carbon black. Polym Compos, 30, 897 (2009). crossref(new window)

Mao Y, Wen S, Chen Y, Zhang F, Panine P, Chan TW, Zhang L, Liang Y, Liu L. High performance graphene oxide based rubber composites. Sci Rep, 3, 2508 (2013). crossref(new window)

Salaeh S, Nakason C. Influence of modified natural rubber and structure of carbon black on properties of natural rubber compounds. Polym Compos, 33, 489 (2012). crossref(new window)

Park SJ, Cho KS. Filler-elastomer interactions: influence of silane coupling agent on crosslink density and thermal stability of silica/ rubber composites. J Colloid Interface Sci, 267, 86 (2003). crossref(new window)

Park SJ, Seo MK. Interfacial characteristics of polymeric composite materials. Polymer (Korea), 29, 221 (2005).

Park SJ, Cho KS, Zaborski M, Slusarski L. Filler-elastomer interaction. 5. Effect of silane surface treatment on interfacial adhesion of silica/rubber composites. Polymer (Korea), 26, 445 (2002).

Sung JH, Ryu SR, Lee DJ. Effects of strain-induced crystallization on mechanical properties of elastomeric composites containing carbon nanotubes and carbon black. Trans Korean Soc Mech Eng A, 35, 999 (2011). crossref(new window)

Peddini SK, Bosnyak CP, Henderson NM, Ellison CJ, Paul DR. Nanocomposites from styrene-butadiene rubber (SBR) and multiwall carbon nanotubes (MWCNT) part 2: mechanical properties. Polymer, 56, 443 (2015). crossref(new window)

Ismail H, Omar NF, Othman N. Effect of carbon black loading on curing characteristics and mechanical properties of waste tyre dust/carbon black hybrid filler filled natural rubber compounds. J Appl Polym Sci, 121, 1143 (2011). crossref(new window)

Fröhlich J, Niedermeier W, Luginsland HD. The effect of filler-filler and filler-elastomer interaction on rubber reinforcement. Compos Part A: Appl Sci Manuf, 36, 449 (2005). http://dx.doi. org/10.1016/j.compositesa.2004.10.004. crossref(new window)

Park SJ, Kim JS. Influence of plasma treatment on microstructures and acid-base surface energetics of nanostructured carbon blacks: N2 plasma environment. J Colloid Interface Sci, 244, 336 (2001). crossref(new window)

Thomas PS, Abdullateef AA, Al-Harthi MA, Atieh MA, De SK, Rahaman M, Chaki TK, Khastgir D, Bandyopadhyay S. Electrical properties of natural rubber nanocomposites: effect of 1-octadecanol functionalization of carbon nanotubes. J Mater Sci, 47, 3344 (2012). crossref(new window)

Park SJ, Kim JS. Role of chemically modified carbon black surfaces in enhancing interfacial adhesion between carbon black and rubber in a composite system. J Colloid Interface Sci, 232, 311 (2000). crossref(new window)

Leblanc JL. Simplified modeling calculations to enlighten the mechanical properties (modulus) of carbon black filled diene rubber compounds. J Appl Polym Sci, 122, 599 (2011). crossref(new window)

Omnès B, Thuillier S, Pilvin P, Grohens Y, Gillet S. Effective properties of carbon black filled natural rubber: experiments and modeling. Compos Part A: Appl Sci Manuf, 39, 1141 (2008). crossref(new window)

Tzounis L, Debnath S, Rooj S, Fischer D, Mäder E, Das A, Stamm M, Heinrich G. High performance natural rubber composites with a hierarchical reinforcement structure of carbon nanotube modified natural fibers. Mater Des, 58, 1 (2014). crossref(new window)

Wang J, Vincent J, Quarles CA. Review of positron annihilation spectroscopy studies of rubber with carbon black filler. Nucl Instrum Methods Phys Res B, 241, 271 (2005). crossref(new window)

Kim JK. Conductive carbon black filled composite (I): the effect of carbon block on the conductivity. Elastomers Compos, 33, 355 (1998).

Carli LN, Roncato CR, Zanchet A, Mauler RS, Giovanela M, Brandalise RN, Crespo JS. Characterization of natural rubber nanocomposites filled with organoclay as a substitute for silica obtained by the conventional two-roll mill method. Appl Clay Sci, 52, 56 (2011). crossref(new window)

Junkong P, Kueseng P, Wirasate S, Huynh C, Rattanasom N. Cut growth and abrasion behaviour, and morphology of natural rubber filled with MWCNT and MWCNT/carbon black. Polym Test, 41, 172 (2015). crossref(new window)

Matos CF, Galembeck F, Zarbin AJG. Multifunctional and environmentally friendly nanocomposites between natural rubber and graphene or graphene oxide. Carbon, 78, 469 (2014). crossref(new window)

Tang Z, Zhang L, Feng W, Guo B, Liu F, Jia D. Rational design of graphene surface chemistry for high-performance rubber/graphene composites. Macromolecules, 47, 8663 (2014). crossref(new window)

Jo JO, Saha P, Kim NG, Ho CC, Kim JK. Development of nanocomposite with epoxidized natural rubber and functionalized multiwalled carbon nanotubes for enhanced thermal conductivity and gas barrier property. Mater Des, 83, 777 (2015). crossref(new window)

Nakaramontri Y, Kummerlöwe C, Nakason C, Vennemann N. The effect of surface functionalization of carbon nanotubes on properties of natural rubber/carbon nanotube composites. Polym Compos, 36, 2113 (2015). crossref(new window)

Takeuchi K, Noguchi T, Ueki H, Niihara KI, Sugiura T, Inukai S, Fujishige M. Improvement in characteristics of natural rubber nanocomposite by surface modification of multi-walled carbon nanotubes. J Phys Chem Solids, 80, 84 (2015). crossref(new window)

Kim SY, Baek SJ, Youn JR. New hybrid method for simultaneous improvement of tensile and impact properties of carbon fiber reinforced composites. Carbon, 49, 5329 (2011). crossref(new window)

Laoui T. Mechanical and thermal properties of styrene butadiene rubber-functionalized carbon nanotubes nanocomposites. Fullerenes Nanotubes Carbon Nanostruct, 21, 89 (2013). crossref(new window)

Lee SO, Rhee KY, Park SJ. Influence of chemical surface treatment of basalt fibers on interlaminar shear strength and fracture toughness of epoxy-based composites. J Ind Eng Chem, 32, 153 (2015). crossref(new window)

Jeong JM, Rhee KY, Park SJ. Effect of chemical treatments on lithium recovery process of activated carbons. J Ind Eng Chem, 27, 329 (2015). crossref(new window)

Lee SY, Kim BJ, Park SJ. Influence of H2O2 treatment on electrochemical activity of mesoporous carbon-supported Pt-Ru catalysts. Energy, 66, 70 (2014). crossref(new window)

Im JS, Kwon O, Kim YH, Park SJ, Lee YS. The effect of embedded vanadium catalyst on activated electrospun CFs for hydrogen storage. Microporous Mesoporous Mater, 115, 514 (2008). crossref(new window)

Jovanović V, Samaržija-Jovanović S, Budinski-Simendić J, Marković G, Marinović-Cincović M. Composites based on carbon black reinforced NBR/EPDM rubber blends. Compos Part B: Eng, 45, 333 (2013). crossref(new window)

Araby S, Meng Q, Zhang L, Zaman I, Majewski P, Ma J. Elastomeric composites based on carbon nanomaterials. Nanotechnology, 26, 112001 (2015). crossref(new window)

Griffini G, Suriano R, Turri S. Correlating mechanical and electrical properties of filler-loaded polyurethane fluoroelastomers: the influence of carbon black. Polym Eng Sci, 52, 2543 (2012). crossref(new window)

Korai Y, Wang YG, Yoon SH, Ishida S, Mochida I, Nakagawa Y, Matsumura Y. Effects of carbon black addition on preparation of meso-carbon microbeads. Carbon, 35, 875 (1997). crossref(new window)

Kanno K, Fernandez JJ, Fortin F, Korai Y, Mochida I. Modifications to carbonization of mesophase pitch by addition of carbon blacks. Carbon, 35, 1627 (1997). crossref(new window)

Park SJ, Cho KS, Ryu SK. Filler-elastomer interactions: influence of oxygen plasma treatment on surface and mechanical properties of carbon black/rubber composites. Carbon, 41, 1437 (2003). crossref(new window)

Park SJ, Kim JS. Modifications produced by electrochemical treatments on carbon blacks: microstructures and mechanical interfacial properties. Carbon, 39, 2011 (2001). crossref(new window)

Leblanc JL. Rubber-filler interactions and rheological properties in filled compounds. Prog Polym Sci, 27, 627 (2002). crossref(new window)

Ghosh AK, Maiti S, Adhikari B, Ray GS, Mustafi SK. Effect of modified carbon black on the properties of natural rubber vulcanizate. J Appl Polym Sci, 66, 683 (1997).<683::AID-APP8>3.0.CO;2-O. crossref(new window)

Bandyopadhyay S, De PP, Tripathy DK, De SK. Influence of surface oxidation of carbon black on its interaction with nitrile rubbers. Polymer, 37, 353 (1996). crossref(new window)

Jiang HX, Ni QQ, Natsuki T. Design and evaluation of the interface between carbon nanotubes and natural rubber. Polym Compos, 32, 236 (2011). crossref(new window)

Serizawa H, Nakamura T, Ito M, Tanaka K, Nomura A. Effects of oxidation of carbon black surface on the properties of carbon black-natural rubber systems. Polym J, 15, 201 (1983). crossref(new window)

Ko KR, Ryu SK, Park SJ. Effect of ozone treatment on Cr (VI) and Cu (II) adsorption behaviors of activated carbon fibers. Carbon, 42, 1864 (2004). crossref(new window)

Park SJ, Jin SY. Effect of ozone treatment on ammonia removal of activated carbons. J Colloid Interface Sci, 286, 417 (2005). crossref(new window)

Jin FL, Park SJ. Preparation and characterization of carbon fiberreinforced thermosetting composites: a review. Carbon Lett, 16, 67 (2015). crossref(new window)

Kim S, Park SJ. Effect of acid/base treatment to carbon blacks on preparation of carbon-supported platinum nanoclusters. Electrochim Acta, 52, 3013 (2007). crossref(new window)

Fowkes FM. Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces. J Phys Chem, 66, 382 (1962). crossref(new window)

Park SJ, Brendle M. London dispersive component of the surface free energy and surface enthalpy. J Colloid Interface Sci, 188, 336 (1997). crossref(new window)

Park SJ, Donnet JB. Anodic surface treatment on carbon fibers: determination of acid-base interaction parameter between two unidentical solid surfaces in a composite system. J Colloid Interface Sci, 206, 29 (1998). crossref(new window)

Kim S, Park SJ. Effects of chemical treatment of carbon supports on electrochemical behaviors for platinum catalysts of fuel cells. J Power Sources, 159, 42 (2006). crossref(new window)

Park SJ, Kim JS, Nah CW. Filler-elastomer interactions. 1. Roles of modified carbon black surfaces to enhance mechanical properties of carbon black/rubber vulcanizates. Elastomers Compos, 35, 98 (2000).

Park SJ, Kim JS. Filler-elastomer interactions. 2. Cure behaviors and mechanical interfacial properties of carbon black/rubber composites. Elastomers Compos, 35, 122 (2000).

Park SJ, Seo MK, Nah C. Influence of surface characteristics of carbon blacks on cure and mechanical behaviors of rubber matrix compoundings. J Colloid Interface Sci, 291, 229 (2005). crossref(new window)

Park SJ, Kang JY, Hong SK. Effect of acid-base characteristics of carbon black surfaces on mechanical behaviors of EPDM matrix composites. Polymer (Korea), 29, 151 (2005).

Park SJ, Kim JS, Lee JR, Shin CH, Nah CW. Chemical surface treatment of carbon black to enhance interfacial adhesion between elastomer and carbon black. Elastomers Compos, 34, 222 (1999).

Kim KY, Rhyoo HY, Cho SJ, Yoon KE, Yang SI. Oxidation and surface functional group analyses under ozone treatment of carbon black. Elastomers Compos, 40, 188 (2005).

Park SJ, Cho KS, Zaborski M, Slusarski L. Filler-elastomer interactions. 10. Ozone treatment on interfacial adhesion of carbon Blacks/NBR compounds. Elastomers Compos, 38, 139 (2003).

Park SJ, Kim BJ. Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior. Mater Sci Eng: A, 408, 269 (2005). crossref(new window)

Park SJ, Cho KS, Zaborski M, Slusarski L. Filler-elastomer interactions. 6. Influence of oxygen plasma treatment on surface properties of carbon black. Elastomers Compos, 37, 99 (2002).

Poikelispää M, Das A, Dierkes W, Vuorinen J. Synergistic effect of plasma-modified halloysite nanotubes and carbon black in natural rubber—butadiene rubber blend. J Appl Polym Sci, 127, 4688 (2013). crossref(new window)

Takada T, Nakahara M, Kumagai H, Sanada Y. Surface modification and characterization of carbon black with oxygen plasma. Carbon, 34, 1087 (1996). crossref(new window)

Park SJ, Kim JS, Choi KE. Filler-elastomer interactions: 4. Effect of plasma treatment on surface properties of carbon blacks. Elastomers Compos, 36, 94 (2001).

Kim S, Cho MH, Lee JR, Park SJ. Influence of plasma treatment of carbon blacks on electrochemical activity of Pt/carbon blacks catalysts for DMFCs. J Power Sources, 159, 46 (2006). crossref(new window)

Kim DS, Dhand V, Rhee KY, Park SJ. Surface treatment and modification of graphene using organosilane and its thermal stability. Arch Metall Mater, 60, 1387 (2015). crossref(new window)

Lee SY, Park SJ. Hydrogen adsorption of acid-treated multi-walled carbon nanotubes at low temperature. Bull Korean Chem Soc, 31, 1596 (2010). crossref(new window)

Jin FL, Ma CJ, Park SJ. Thermal and mechanical interfacial properties of epoxy composites based on functionalized carbon nanotubes. Mater Sci Eng: A, 528, 8517 (2011). crossref(new window)

Park SJ, Jang YS. Pore structure and surface properties of chemically modified activated carbons for adsorption mechanism and rate of Cr (VI). J Colloid Interface Sci, 249, 458 (2002). crossref(new window)

Park SJ, Kim KD. Adsorption behaviors of CO2 and NH3 on chemically surface-treated activated carbons. J Colloid Interface Sci, 212, 186 (1999). crossref(new window)

Park SJ, Kim MH. Effect of acidic anode treatment on carbon fibers for increasing fiber-matrix adhesion and its relationship to interlaminar shear strength of composites. J Mater Sci, 35, 1901 (2000). crossref(new window)

Yuan LY, Chen CS, Shyu SS, Lai JY. Plasma surface treatment on carbon fibers. Part 1: Morphology and surface analysis of plasma etched fibers. Compos Sci Technol, 45, 1 (1992). crossref(new window)

Tunnicliffe LB, Kadlcak J, Morris MD, Shi Y, Thomas AG, Bus-field JJC. Flocculation and viscoelastic behaviour in carbon black-filled natural rubber. Macromol Mater Eng, 299, 1474 (2014). crossref(new window)

Eatah AI, El-Nour KNA, Ghani AA, Hashem AA. Dielectric and conduction properties of aged and unaged butyl rubber-carbon black mixtures. Polym Degrad Stab, 22, 91 (1988). crossref(new window)

Abdel-Nour KN, Hanna FF, Abdel-Messieh SL. Dielectric properties of some synthetic rubber mixtures: Part II. Butyl rubber-carbon black mixtures. Polym Degrad Stab, 35, 121 (1992). crossref(new window)

Eatah AI, Ghani AA, Hashem AA. Effect of concentration and temperature on the electrical conductivity in butyl rubber loaded with different types of carbon black. Polym Degrad Stab, 23, 9 (1989). crossref(new window)

Gao S, Wang R, Fang B, Kang H, Mao L, Zhang L. Preparation and properties of a novel bio-based and non-crystalline engineering elastomer with high low-temperature and oil resistance. J Appl Polym Sci, 133, (2016). crossref(new window)

Prukkaewkanjana K, Thanawan S, Amornsakchai T. High performance hybrid reinforcement of nitrile rubber using short pineapple leaf fiber and carbon black. Polym Test, 45, 76 (2015). crossref(new window)

Hoshikawa Y, An B, Kashihara S, Ishii T, Ando M, Fujisawa S, Hayakawa K, Hamatani S, Yamada H, Kyotani T. Analysis of the interaction between rubber polymer and carbon black surfaces by efficient removal of physisorbed polymer from carbon-rubber composites. Carbon, 99, 148 (2016). crossref(new window)

Nah CW, Rhee JM, Kim WD, Kaang, S, Chang YW, Park SJ. Effects of chemical surface modification of carbon black on vulcanization and mechanical properties of styrene-butadiene rubber compound. Elastomers Compos, 36, 44 (2001).

Karásek L, Meissner B, Asai S, Sumita M. Percolation concept: polymer-filler gel formation, electrical conductivity and dynamic electrical properties of carbon-black-filled rubbers. Polym J, 28, 121(1996). crossref(new window)

Kim YH, Wool RP. A theory of healing at a polymer-polymer interface. Macromolecules, 16, 1115 (1983). crossref(new window)

Dai SY, Ao GY, Kim MS. Properties of carbon black/SBR rubber composites filled by surface modified carbon blacks. Carbon Lett, 8, 115 (2007). crossref(new window)

Jia W, Chen X. Effect of polymer-filler interactions on PTC behaviors of LDPE/EPDM blends filled with carbon blacks. J Appl Polym Sci, 66, 1885 (1997).<1885::aid-app5>;2-j. crossref(new window)

Oakey J, Marr DWM, Schwartz KB, Wartenberg M. Influence of polyethylene and carbon black morphology on void formation in conductive composite materials: a SANS study. Macromolecules, 32, 5399 (1999). crossref(new window)

Léopoldés J, Barrès C, Leblanc JL, Georget P. Influence of filler-rubber interactions on the viscoelastic properties of carbon-blackfilled rubber compounds. J Appl Polym Sci, 91, 577 (2004). crossref(new window)

de Torre LEC, Bottani EJ, Martínez-Alonso A, Cuesta A, García AB, Tascón JMD. Effects of oxygen plasma treatment on the surface of graphitized carbon black. Carbon, 36, 277 (1998). crossref(new window)

Peña JM, Allen NS, Edge M, Liauw CM, Hoon SR, Valange B, Cherry RI. Analysis of radical content on carbon black pigments by electron spin resonance: influence of functionality, thermal treatment and adsorption of acidic and basic probes. Polym Degrad Stab, 71, 153 (2000). crossref(new window)

Semaan ME, Nikiel L, Quarles CA. Doppler broadening spectroscopy of carbon black and carbon black-filled rubbers. Carbon, 39, 1379 (2001). crossref(new window)

Akovali G, Ulkem I. Some performance characteristics of plasma surface modified carbon black in the (SBR) matrix. Polymer, 40, 7417 (1999). crossref(new window)

Ayala JA, Hess WM, Joyce GA, Kistler FD. Carbon-black-elastomer interaction II: effects of carbon black surface activity and loading. Rubber Chem Technol, 66, 772 (1993). crossref(new window)

Ayala JA, Hess WM, Dotson AO, Joyce GA. New studies on the surface properties of carbon blacks. Rubber Chem Technol, 63, 747 (1990). crossref(new window)

Mathew T, Datta RN, Dierkes WK, Talma AG, van Ooij WJ, Noordermeer JWM. Plasma polymerization surface modification of carbon black and its effect in elastomers. Macromol Mater Eng, 296, 42 (2011). crossref(new window)