Advanced SearchSearch Tips
Atmospheric chemical vapor deposition of graphene on molybdenum foil at different growth temperatures
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 18, Issue ,  2016, pp.37-42
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2016.18.037
 Title & Authors
Atmospheric chemical vapor deposition of graphene on molybdenum foil at different growth temperatures
Naghdi, Samira; Rhee, Kyong Yop; Kim, Man Tae; Jaleh, Babak; Park, Soo Jin;
  PDF(new window)
Graphene was grown on molybdenum (Mo) foil by a chemical vapor deposition method at different growth temperatures (1000℃, 1100℃, and 1200℃). The properties of graphene were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy, and Raman spectroscopy. The results showed that the quality of the deposited graphene layer was affected by the growth temperature. XRD results showed the presence of a carbide phase on the Mo surface; the presence of carbide was more intense at 1200℃. Additionally, a higher I2D/IG ratio (0.418) was observed at 1200℃, which implies that there are fewer graphene layers at this temperature. The lowest ID/IG ratio (0.908) for the graphene layers was obtained at 1200℃, suggesting that graphene had fewer defects at this temperature. The size of the graphene domains was also calculated. We found that by increasing the growth temperature, the graphene domain size also increased.
chemical vapor deposition;Raman;graphene;molybdenum;growth temperature;
 Cited by
Characteristics of CVD Grown Multi-Layer Graphene under Different Types of Precursors and Their Respective Flow Rate, ECS Journal of Solid State Science and Technology, 2017, 6, 10, M119  crossref(new windwow)
Wang H, Xie G, Fang M, Ying Z, Tong Y, Zeng Y. Electrical and mechanical properties of antistatic PVC films containing multilayer graphene. Compos Part B: Eng, 79, 444 (2015). crossref(new window)

Naghdi S, Rhee KY, Jaleh B, Park SJ. Altering the structure and properties of iron oxide nanoparticles and graphene oxide/iron oxide composites by urea. Appl Surf Sci, 364, 686 (2016). crossref(new window)

Gan L, Shang S, Yuen CWM, Jiang SX, Luo NM. Facile preparation of graphene nanoribbon filled silicone rubber nanocomposite with improved thermal and mechanical properties. Compos Part B: Eng, 69, 237 (2015). crossref(new window)

Guermoune A, Chari T, Popescu F, Sabri SS, Guillemette J, Skulason HS, Szkopek T, Siaj M. Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon, 49, 4204 (2011). crossref(new window)

Mattevi C, Kim H, Chhowalla M. A review of chemical vapour deposition of graphene on copper. J Mater Chem, 21, 3324 (2011). crossref(new window)

Mišković-Stanković V, Jevremović I, Jung I, Rhee KY. Electrochemical study of corrosion behavior of graphene coatings on copper and aluminum in a chloride solution. Carbon, 75, 335 (2014). crossref(new window)

Cushing GW, Johánek V, Navin JK, Harrison I. Graphene growth on Pt(111) by ethylene chemical vapor deposition at surface temperatures near 1000 K. J Phys Chem C, 119, 4759 (2015). crossref(new window)

An X, Liu F, Jung YJ, Kar S. Large-area synthesis of graphene on palladium and their Raman spectroscopy. J Phys Chem C, 116, 16412 (2012). crossref(new window)

Tonnoir C, Kimouche A, Coraux J, Magaud L, Delsol B, Gilles B, Chapelier C. Induced superconductivity in graphene grown on rhenium. Phys Rev Lett, 111, 246805 (2013). crossref(new window)

Nayak PK, Hsu CJ, Wang SC, Sung JC, Huang JL. Graphene coated Ni films: a protective coating. Thin Solid Films, 529, 312 (2013). crossref(new window)

Sutter PW, Flege JI, Sutter EA. Epitaxial graphene on ruthenium. Nat Mater, 7, 406 (2008). crossref(new window)

Vo-Van C, Kimouche A, Reserbat-Plantey A, Fruchart O, Bayle-Guillemaud P, Bendiab N, Coraux J. Epitaxial graphene prepared by chemical vapor deposition on single crystal thin iridium films on sapphire. Appl Phys Lett, 98, 181903 (2011). crossref(new window)

Ago H, Ito Y, Mizuta N, Yoshida K, Hu B, Orofeo CM, Tsuji M, Ikeda KI, Mizuno S. Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt film crystallized on sapphire. ACS Nano, 4, 7407 (2010). crossref(new window)

Gotterbarm K, Zhao W, Höfert O, Gleichweit C, Papp C, Steinrück HP. Growth and oxidation of graphene on Rh(111). Phys Chem Chem Phys, 15, 19625 (2013). crossref(new window)

Zou Z, Song X, Chen K, Ji Q, Zhang Y, Liu Z. Uniform single-layer graphene growth on recyclable tungsten foils. Nano Res, 8, 592 (2015). crossref(new window)

Park YS, Moon HS, Huh M, Kim BJ, Kuk YS, Kang SJ, Lee SH, An KH. Synthesis of aligned and length-controlled carbon nanotubes by chemical vapor deposition. Carbon Lett, 14, 99 (2013). crossref(new window)

Jodin L, Dupuis AC, Rouvière E, Reiss P. Influence of the catalyst type on the growth of carbon nanotubes via methane chemical vapor deposition. J Phys Chem B, 110, 7328 (2006). crossref(new window)

Wu Y, Yu G, Wang H, Wang B, Chen Z, Zhang Y, Wang B, Shi X, Xie X, Jin Z, Liu X. Synthesis of large-area graphene on molybdenum foils by chemical vapor deposition. Carbon, 50, 5226 (2012). crossref(new window)

Grachova Y, Vollebregt S, Lacaita AL, Sarro PM. High quality wafer-scale CVD graphene on molybdenum thin film for sensing application. Procedia Eng, 87, 1501 (2014). crossref(new window)

Hsieh YP, Hofmann M, Kong J. Promoter-assisted chemical vapor deposition of graphene. Carbon, 67, 417 (2014). crossref(new window)

Vlassiouk I, Smirnov S, Regmi M, Surwade SP, Srivastava N, Feenstra R, Eres G, Parish C, Lavrik N, Datskos P, Dai S, Fulvio P. Graphene nucleation density on copper: fundamental role of background pressure. J Phys Chem C, 117, 18919 (2013). crossref(new window)

Li Z, Wu P, Wang C, Fan X, Zhang W, Zhai X, Zeng C, Li Z, Yang J, Hou J. Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources. ACS Nano, 5, 3385 (2011). crossref(new window)

Li X, Magnuson CW, Venugopal A, An J, Suk JW, Han B, Borysiak M, Cai W, Velamakanni A, Zhu Y, Fu L, Vogel EM, Voelkl E, Colombo L, Ruoff RS. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett, 10, 4328 (2010). crossref(new window)

Chen Y, Zhang H, Zhang J, Ma J, Ye H, Qian G, Ye Y, Zhong S. Facile synthesis and thermal stability of nanocrystalline molybdenum carbide. Mater Sci Appl, 2, 1313 (2011). crossref(new window)

Jourdain V, Bichara C. Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition. Carbon, 58, 2 (2013). crossref(new window)

Son YR, Rhee KY, Park SJ. Influence of reduced graphene oxide on mechanical behaviors of sodium carboxymethyl cellulose. Compos Part B: Eng, 83, 36 (2015). crossref(new window)

Cançado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhães-Paniago R, Pimenta MA. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl Phys Lett, 88, 163106 (2006). crossref(new window)