JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Investigation of carbon dioxide adsorption by nitrogen-doped carbons synthesized from cubic MCM-48 mesoporous silica
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 18, Issue ,  2016, pp.62-66
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2016.18.062
 Title & Authors
Investigation of carbon dioxide adsorption by nitrogen-doped carbons synthesized from cubic MCM-48 mesoporous silica
Heo, Young-Jung; T.Le, Minh-Uyen; Park, Soo-Jin;
  PDF(new window)
 Keywords
MCM-48;nitrogen-doped carbons;CO2 adsorption;thermal gravimetric analysis method;
 Language
English
 Cited by
 References
1.
D'Alessandro DM, Smit B, Long JR. Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed, 49, 6058 (2010). http://dx.doi.org/10.1002/anie.201000431. crossref(new window)

2.
Armatas GS, Kanatzidis MG. Mesostructured germanium with cubic pore symmetry. Nature, 441, 1122 (2006). http://dx.doi.org/10.1038/nature04833. crossref(new window)

3.
Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I. Progress in carbon dioxide separation and capture: a review. J Environ Sci, 20, 14 (2008). http://dx.doi.org/10.1016/S1001-0742(08)60002-9. crossref(new window)

4.
Mishra AK, Ramaprabhu S. Polyaniline/multiwalled carbon nanotubes nanocomposite-an excellent reversible CO2 capture candidate. RSC Adv, 2, 1746 (2012). http://dx.doi.org/10.1039/C1RA00958C. crossref(new window)

5.
Fracaroli AM, Furukawa H, Suzuki M, Dodd M, Okajima S, Gándara F, Reimer JA, Yaghi OM. Metal-organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water. J Am Chem Soc, 136, 8863 (2014). http://dx.doi.org/10.1021/ja503296c. crossref(new window)

6.
Liu J, Thallapally PK, McGrail BP, Brown DR, Liu J. Progress in adsorption-based CO2 capture by metal-organic frameworks. Chem Soc Rev, 41, 2308 (2012). http://dx.doi.org/10.1039/C1CS15221A. crossref(new window)

7.
Xie LH, Suh MP. High CO2-capture ability of a porous organic polymer bifunctionalized with carboxy and triazole groups. Chem Eur J, 19, 11590 (2013). http://dx.doi.org/10.1002/chem.201301822. crossref(new window)

8.
Patel HA, Je SH, Park J, Chen DP, Jung Y, Yavuz CT, Coskun A. Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers. Nat Commun, 4, 1357 (2013). http://dx.doi.org/10.1038/ncomms2359. crossref(new window)

9.
Meng LY, Park SJ. Effect of heat treatment on CO2 adsorption of KOH-activated graphite nanofibers. J Colloid Interface Sci, 352, 498 (2010). http://dx.doi.org/10.1016/j.jcis.2010.08.048. crossref(new window)

10.
Kim BJ, Lee YS, Park SJ. Novel porous carbons synthesized from polymeric precursors for hydrogen storage. Int J Hydrogen Energy, 33, 2254 (2008). http://dx.doi.org/10.1016/j.ijhydene.2008.02.019. crossref(new window)

11.
Le MUT, Lee SY, Park SJ. Preparation of characterization of PEI loaded MCM-41 for CO2 capture. Int J Hydrogen Energy, 39, 12340 (2014). http://dx.doi.org/10.1016/j.ijhydene.2014.04.112. crossref(new window)

12.
Bae TH, Hudson MR, Mason JA, Queen WL, Dutton JJ, Sumida K, Micklash KJ, Kaye SS, Brown CM, Long JR. Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture. Energy Environ Sci, 6, 128 (2013). http://dx.doi.org/10.1039/C2EE23337A. crossref(new window)

13.
Park SJ, Kim KD. Adsorption behavior of CO2 and NH3 on chemically surface-treated activated carbons. J Colloid Interface Sci, 212, 186 (1999). http://dx.doi.org/ 10.1006/jcis.1998.6058. crossref(new window)

14.
Saleh M, Tiwari JN, Kemp KC, Yousuf M, Kim KS. Highly selective and stable carbon dioxide uptake in polyindole-derived microporous carbon materials. Environ Sci Technol, 47, 5467 (2013). http://dx.doi.org/10.1021/es3052922. crossref(new window)

15.
Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials. Adv Mater, 18, 2073 (2006). http://dx.doi.org/10.1002/adma.200501576. crossref(new window)

16.
Park SJ, Kim BJ, Lee YS, Cho MJ. Influence of copper electroplating on high pressure hydrogen-storage behaviors of activated carbon fibers. Int J Hydrogen Energy, 33, 1706 (2008). http://dx.doi.org/10.1016/j.ijhydene.2008.01.011. crossref(new window)

17.
Heo YJ, Park SJ. Synthesis of activated carbon derived from rice husks for improving hydrogen storage capacity. J Ind Eng Chem, 31, 330 (2015). http://dx.doi.org/10.1016/j.jiec.2015.07.006. crossref(new window)

18.
Park SJ, Kim KD. Influence of activation temperature on adsorption characteristics of activated carbon fiber composites. Carbon, 39, 1741 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00305-5. crossref(new window)

19.
Chumphongphan S, Filsø U, Paskevicius M, Sheppard DA, Jensen TR, Buckley CE. Nanoconfinement degradation in NaAlH4/CMK-1. Int J Hydrogen Energy, 39, 11103 (2014). http://dx.doi.org/10.1016/j.ijhydene.2014.05.087. crossref(new window)

20.
Wang Y, Wang X, Antonietti M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew Chem Int Ed, 51, 68 (2012). http://dx.doi.org/10.1002/anie.201101182. crossref(new window)

21.
Wei J, Zhou D, Sun Z, Deng Y, Xia Y, Zhao D. A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors. Adv Funct Mater, 23, 2322 (2013). http://dx.doi.org/10.1002/adfm.201202764. crossref(new window)

22.
Lysenko ND, Shvets AV, Yaremov PS, Il'in VG. Effect of the conditions of the matrix carbonization of sucrose on the structure and adsorption properties of mesoporous carbon materials. Theor Exp Chem, 44, 374 (2008). http://dx.doi.org/10.1007/s11237-009-9055-z. crossref(new window)

23.
Lee SY, Yoo HM, Park SW, Park SH, Oh YS, Rhee KY, Park SJ. Preparation and characterization of pitch-based nanoporous carbons for improving CO2 capture. J Solid State Chem, 215, 201 (2014). http://dx.doi.org/10.1016/j.jssc.2014.03.038. crossref(new window)

24.
Yoon SB, Kim JY, Yu JS. Synthesis of highly ordered nanoporous carbon molecular sieves from silylated MCM-48 using divinylbenzene as precursor. Chem Commun, 6, 559 (2001). http://dx.doi.org/10.1039/B009691L. crossref(new window)

25.
Yang H, Zhao D. Synthesis of replica mesostructures by the nanocasting strategy. J Mater Chem, 15, 1217 (2005). http://dx.doi.org/10.1039/B414402C. crossref(new window)

26.
Ryoo R, Joo SH, Kruk M, Jaroniec M. Ordered mesoporous carbons. Adv Mater, 13, 677 (2001). http://dx.doi.org/10.1002/1521-4095(200105)13:9<677::AID-ADMA677> 3.0.CO;2-C. crossref(new window)

27.
Kruk M, Jaroniec M, Ryoo R, Joo SH. Characterization of ordered mesoporous carbons synthesized using MCM-48 silicas as templates. J Phys Chem B, 104, 7960 (2000). http://dx.doi.org/10.1021/jp000861u. crossref(new window)

28.
Jiao F, Yen H, Hutchings GS, Yonemoto B, Lu Q, Kleitz F. Synthesis, structural characterization, and electrochemical performance of nanocast mesoporous Cu-/Fe-based oxides. J Mater Chem A, 2, 3065 (2014). http://dx.doi.org/10.1039/C3TA14111J. crossref(new window)

29.
Carlsson A, Kaneda M, Sakamoto Y, Terasaki O, Ryoo R, Joo SH. The structure of MCM-48 determined by electron crystallography. J Electron Microsc (Tokyo), 48, 795 (1999). http://dx.doi.org/10.1093/oxfordjournals.jmicro.a023751. crossref(new window)

30.
Heo YJ, Park SJ. A role of steam activation on CO2 capture and separation of narrow microporous carbons produced from cellulose fibers. Energy, 91, 142 (2015). http://dx.doi.org/10.1016/j.energy.2015.08.033. crossref(new window)

31.
Lu AH, Schüth F. Nanocasting: a versatile strategy for creating nanostructured porous materials. Adv Mater, 18, 1793 (2006). http://dx.doi.org/10.1002/adma.200600148. crossref(new window)