JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Enhancement of reflectance of densified vertically aligned carbon nanotube forests
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 18, Issue ,  2016, pp.67-70
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2016.18.067
 Title & Authors
Enhancement of reflectance of densified vertically aligned carbon nanotube forests
Rana, Masud; MRazib, MAsyraf; Saleh, T.; Muthalif, Asan G.A.;
  PDF(new window)
 Keywords
carbon nanotubes forest;densification;polarization;reflectance;
 Language
English
 Cited by
 References
1.
Yang ZP, Ci L, Bur JA, Lin SY, Ajayan PM. Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Lett, 8, 446 (2008). http://dx.doi.org/10.1021/nl072369t. crossref(new window)

2.
Hsieh KC, Tsai TY, Wan D, Chen HL, Tai NH. Iridescence of patterned carbon nanotube forests on flexible substrates: from darkest materials to colorful films. ACS Nano, 4, 1327 (2010). http://dx.doi.org/10.1021/nn901910h. crossref(new window)

3.
Modi A, Koratkar N, Lass E, Wei B, Ajayan PM. Miniaturized gas ionization sensors using carbon nanotubes. Nature, 424, 171 (2003). http://dx.doi.org/10.1038/nature01777. crossref(new window)

4.
Bsoul A, Ali MSM, Takahata K. Piezoresistive pressure sensor using vertically aligned carbon-nanotube forests. Electron Lett, 47, 807 (2011). http://dx.doi.org/10.1049/el.2011.1498. crossref(new window)

5.
Karimov KS, Chani MTS, Khalid FA. Carbon nanotubes film based temperature sensors. Physica E: Low Dimens Syst Nanostruct, 43, 1701 (2011). http://dx.doi.org/10.1016/j.physe.2011.05.025. crossref(new window)

6.
Kanoun O, Müller C, Benchirouf A, Sanli A, Dinh TN, Al-Hamry A, Bu L, Gerlach C, Bouhamed A. Flexible carbon nanotube films for high performance strain sensors. Sensors, 14, 10042 (2014). http://dx.doi.org/10.3390/s140610042. crossref(new window)

7.
Saleh T, Moghaddam MV, Ali MSM, Dahmardeh M, Foell CA, Nojeh A, Takahata K. Transforming carbon nanotube forest from darkest absorber to reflective mirror. Appl Phys Lett, 101, 061913 (2012). http://dx.doi.org/10.1063/1.4744429. crossref(new window)

8.
Mukherjee S, Misra A. Broadband wavelength-selective reflectance and selective polarization by a tip-bent vertically aligned multi-walled carbon nanotube forest. J Phys D: Appl Phys, 47, 235501 (2014). http://dx.doi.org/10.1088/0022-3727/47/23/235501. crossref(new window)

9.
Wąsik M, Judek J, Zdrojek M. Polarization-dependent optical reflection from vertically aligned multiwalled carbon nanotube arrays. Carbon, 64, 550 (2013). http://dx.doi.org/10.1016/j.carbon.2013.07.068. crossref(new window)

10.
Jiang D, Wang T, Chen S, Ye L, Liu J. Paper-mediated controlled densification and low temperature transfer of carbon nanotube forests for electronic interconnect application. Microelectron Eng, 103, 177 (2013). http://dx.doi.org/10.1016/j.mee.2012.11.007. crossref(new window)

11.
Puretzky AA, Geohegan DB, Jesse S, Ivanov IN, Eres G. In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition. Appl Phys A, 81, 223 (2005). http://dx.doi.org/10.1007/s00339-005-3256-7. crossref(new window)

12.
Zeng H, Jiao L, Xian X, Qin X, Liu Z, Cui X. Reflectance spectra of individual single-walled carbon nanotubes. Nanotechnology, 19, 045708 (2008). http://dx.doi.org/10.1088/0957-4484/19/04/045708. crossref(new window)

13.
Khalid W, Ali MSM, Dahmardeh M, Choi Y, Yaghoobi P, Nojeh A, Takahata K. High-aspect-ratio, free-form patterning of carbon nanotube forests using micro-electro-discharge machining. Diam Relat Mater, 19, 1405 (2010). http://dx.doi.org/10.1016/j.diamond.2010.08.007. crossref(new window)

14.
Wang XJ, Wang LP, Adewuyi OS, Cola BA, Zhang ZM. Highly specular carbon nanotube absorbers. Appl Phys Lett, 97, 163116 (2010). http://dx.doi.org/10.1063/1.3502597. crossref(new window)