Advanced SearchSearch Tips
Comparative study on various sponges as substrates for reduced graphene oxide-based supercapacitor
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 18, Issue ,  2016, pp.71-75
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2016.18.071
 Title & Authors
Comparative study on various sponges as substrates for reduced graphene oxide-based supercapacitor
Choi, Dongcheol; Kim, Kyuwon;
  PDF(new window)
supercapacitor;reduced graphene oxide;sponge;polyvinyl alcohol;
 Cited by
Lin Z, Liu Y, Yao Y, Hildreth OJ, Li Z, Moon K, Wong CP. Superior capacitance of functionalized graphene. J Phys Chem C, 115, 7120 (2011). crossref(new window)

Zhao B, Liu P, Jiang Y, Pan D, Tao H, Song J, Fang T, Xu W. Supercapacitor performances of thermally reduced graphene oxide. J Power Sources, 198, 423 (2012). crossref(new window)

Kötz R, Carlen M. Principles and applications of electrochemical capacitors. Electrochim Acta, 45, 2483 (2000). crossref(new window)

Chu A, Braatz P. Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles: I. initial characterization. J Power Sources, 112, 236 (2002). crossref(new window)

Burke A. Ultracapacitors: why, how, and where is the technology. J Power Sources, 91, 37 (2000). crossref(new window)

Halper MS, Ellenbogen JC. Supercapacitors: A Brief Overview, The MITRE Corporation, McLean, VA (2006).

Conway BE. Transition from "Supercapacitor" to "Battery" Behavior in Electrochemical Energy Storage. J Electrochem Soc, 138, 1539 (1991). crossref(new window)

Conway BE, Birss V, Wojtowicz J. The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources, 66, 1 (1997). crossref(new window)

Stoller MD, Park S, Zhu Y, An J, Ruoff RS. Graphene-based ultracapacitors. Nano Lett, 8, 3498 (2008). crossref(new window)

Pumera M. Electrochemistry of graphene: new horizons for sensing and energy storage. Chem Rec, 9, 211 (2009). crossref(new window)

Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 306, 666 (2004). crossref(new window)

Geim AK, Novoselov KS. The rise of graphene. Nat Mater, 6, 183 (2007). crossref(new window)

Lv W, Xia Z, Wu S, Tao Y, Jin FM, Li B, Du H, Zhu ZP, Yang QH, Kang F. Conductive graphene-based macroscopic membrane self-assembled at a liquid-air interface. J Mater Chem, 21, 3359 (2011). crossref(new window)

Park S, Ruoff RS. Chemical methods for the production of graphenes. Nat Nanotechnol, 4, 217 (2009). crossref(new window)

Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558 (2007). crossref(new window)

Moon IK, Lee J, Ruoff RS, Lee H. Reduced graphene oxide by chemical graphitization. Nat Commun, 1, 73 (2010).

Ge J, Yao HB, Hu W, Yu XF, Yan YX, Mao LB, Li HH, Li SS, Yu SH. Facile dip coating processed graphene/MnO2 nanostructured sponges as high performance supercapacitor electrodes. Nano Energy, 2, 505 (2013). crossref(new window)

Chen W, Rakhi RB, Hu L, Xie X, Cui Y, Alshareef HN. High-performance nanostructured supercapacitors on a sponge. Nano Lett, 11, 5165 (2011). crossref(new window)

Hu L, Chen W, Xie X, Liu N, Yang Y, Wu H, Yao Y, Pasta M, Alshareef HN, Cui Y. Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading. Acs Nano, 5, 8904 (2011). crossref(new window)

Wu Q, Xu Y, Yao Z, Liu A, Shi G. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. Acs Nano, 4, 1963 (2010). crossref(new window)

Paredes JI, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A, Tascón JMD. Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir, 25, 5957 (2009). crossref(new window)

Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater, 20, 4490 (2008). crossref(new window)

Zhou M, Wang Y, Zhai Y, Zhai J, Ren W, Wang F, Dong S. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem Eur J, 15, 6116 (2009). crossref(new window)

Meng Y, Wang K, Zhang Y, Wei Z. Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors. Adv Mater, 25, 6985 (2013). crossref(new window)

Wang H, Hao Q, Yang X, Lu L, Wang X. A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale, 2, 2164 (2010). crossref(new window)

Kim M, Lee C, Jang J. Fabrication of highly flexible, scalable, and high-performance supercapacitors using polyaniline/reduced graphene oxide film with enhanced electrical conductivity and crystallinity. Adv Funct Mater, 24, 2489 (2014). crossref(new window)