JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Structural and preliminary electrochemical characteristics of palm oil based carbon nanospheres as anode materials in lithium ion batteries
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 18, Issue ,  2016, pp.80-83
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2016.18.080
 Title & Authors
Structural and preliminary electrochemical characteristics of palm oil based carbon nanospheres as anode materials in lithium ion batteries
Arie, Arenst Andreas; Kristianto, Hans; Susanti, Ratna Frida; Devianto, Hary; Halim, Martin; Lee, Joong Kee;
  PDF(new window)
 Keywords
carbon nanospheres;thermal pyrolysis;palm oil;activated carbon support;Fe-catalyst;
 Language
English
 Cited by
 References
1.
Ji L, Lin Z, Alcoutlabi M, Zhang X. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci, 4, 2682 (2011). http://dx.doi.org/10.1039/C0EE00699H. crossref(new window)

2.
Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li-O2 and Li-S batteries with high energy storage. Nat Mater, 11, 19 (2012). http://dx.doi.org/10.1038/nmat3191. crossref(new window)

3.
Nishihara H, Kyotani T. Templated nanocarbons for energy storage. Adv Mater, 24, 4473 (2012). http://dx.doi.org/10.1002/adma.201201715. crossref(new window)

4.
Vu A, Qian Y, Stein A. Porous electrode materials for lithiumion batteries: how to prepare them and what makes them special. Adv Energy Mater, 2, 1056 (2012). http://dx.doi.org/10.1002/aenm.201200320. crossref(new window)

5.
Nardecchia S, Carriazo D, Ferrer ML, Gutiérrez MC, del Monte F. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chem Soc Rev, 42, 794 (2013). http://dx.doi.org/10.1039/C2CS35353A. crossref(new window)

6.
Nieto-Márquez A, Romero R, Romero A, Valverde JL. Carbon nanospheres: synthesis, physicochemical properties and applications. J Mater Chem, 21, 1664 (2011). http://dx.doi.org/10.1039/C0JM01350A. crossref(new window)

7.
Roberts AD, Li X, Zhang H. Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem Soc Rev, 43, 4341 (2014). http://dx.doi.org/10.1039/C4CS00071D. crossref(new window)

8.
Qian HS, Han FM, Zhang B, Guo YC, Yue J, Peng BX. Non-catalytic CVD preparation of carbon spheres with a specific size. Carbon, 42, 761 (2004). http://dx.doi.org/10.1016/j.carbon.2004.01.004. crossref(new window)

9.
Hu YS, Demir-Cakan R, Titirici MM, Müller JO, Schlögl R, Antonietti M, Maier J. Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. Angew Chem Int Ed, 47, 1645 (2008). http://dx.doi.org/10.1002/anie.200704287. crossref(new window)

10.
Yang S, Zeng H, Zhao H, Zhang H, Cai W. Luminescent hollow carbon shells and fullerene-like carbon spheres produced by laser ablation with toluene. J Mater Chem, 21, 4432 (2011). http://dx.doi.org/10.1039/C0JM03475D. crossref(new window)

11.
Liu J, Qiao SZ, Liu H, Chen J, Orpe A, Zhao D, Lu GQ. Extension of the Stöber method to the preparation of monodisperse resorcinol: formaldehyde resin polymer and carbon spheres. Angew Chem Int Ed, 50, 5947 (2011). http://dx.doi.org/10.1002/anie.201102011. crossref(new window)

12.
Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S. Carbon materials for chemical capacitive energy storage. Adv Mater, 23, 4828 (2011). http://dx.doi.org/10.1002/adma.201100984. crossref(new window)