Advanced SearchSearch Tips
High-performance asymmetric supercapacitors based on polyoxometalate-graphene nanohybrids
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 18, Issue ,  2016, pp.84-89
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2016.18.084
 Title & Authors
High-performance asymmetric supercapacitors based on polyoxometalate-graphene nanohybrids
Yang, MinHo; Choi, Bong Gill;
  PDF(new window)
polyoxometalate;graphene;ionic liquid;nanohybrid;asymmetric supercapacitor;
 Cited by
Electric Field Enhanced Synthesis of Copper Hydroxide Nanostructures for Supercapacitor Application, Nano, 2017, 12, 01, 1750010  crossref(new windwow)
Armaroli N, Balzani V. Towards electricity-powered world. Energy Environ Sci, 4, 3193 (2011). crossref(new window)

Achilleos DS, Hatton TA. Surface design and engineering of hierarchical hybrid nanostructures for asymmetric supercapacitors with improved electrochemical performance. J Colloid Interface Sci, 447, 282 (2015). crossref(new window)

Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater, 7, 845 (2008). crossref(new window)

Lu Q, Chen JG, Xiao JQ. Nanostructured electrodes for high-performance pseudocapacitors. Angew Chem Int Ed, 52, 1882 (2013). crossref(new window)

Motori A, Sandrolini F, Davolio G. Electrical properties of nickel hydroxide for alkaline cell systems. J Power Sources, 48, 361 (1994). crossref(new window)

Lang XY, Fu HY, Hou C, Han GF, Yang P, Liu YB, Jiang Q. Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors. Nat Commun, 4, 2169 (2013). crossref(new window)

Wang G, Liu H, Horvat J, Wang B, Qiao S, Park J, Ahn H. Highly ordered mesoporous cobalt oxide nanostructures: synthesis, characterisation, magnetic properties, and applications for electrochemical energy devices. Chem Eur J, 16, 11020 (2010). crossref(new window)

Liu J, Jiang J, Cheng C, Li H, Zhang J, Gong H, Fan HJ. Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv Mater, 23, 2076 (2011). crossref(new window)

Xie J, Sun X, Zhang N, Xu K, Zhou M, Xie Y. Layer-by-layer β-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance. Nano Energy, 2, 65 (2013). crossref(new window)

Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci, 7, 1597 (2014). 10.1039/c3ee44164d. crossref(new window)

Wang F, Xiao S, Hou Y, Hu C, Liu L, Wu Y. Electrode materials for aqueous asymmetric supercapacitors. RSC Adv, 3, 13059 (2013). crossref(new window)

Khomenko V, Raymundo-Piñero E, Béguin F. Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium. J Power Sources, 153, 183 (2006). crossref(new window)

Sadakane M, Steckhan E. Electrochemical properties of polyoxometalates as electrocatalysts. Chem Rev, 98, 219 (1998). crossref(new window)

López X, Carbó JJ, Bo C, Poblet JM. Structure, properties and reactivity of polyoxometalates: a theoretical perspective. Chem Soc Rev, 41, 7537 (2012). crossref(new window)

Park S, Lian K, Gogotsi Y. Pseudocapacitive behavior of carbon nanoparticles modified by phosphomolybdic acid. J Electrochem Soc, 156, A921 (2009). crossref(new window)

Kim H, Jung JC, Song IK. Chemical immobilization of heteropolyacid catalyst on inorganic mesoporous material for use as an oxidation catalyst. Catal Surv Asia, 11, 114 (2007). crossref(new window)

Ma D, Liang L, Chen W, Liu H, Song YF. Covalently tethered polyoxometalate-pyrene hybrids for noncovalent sidewall functionalization of single-walled carbon nanotubes as high-performance anode material. Adv Funct Mater, 23, 6100 (2013). crossref(new window)

Giusti A, Charron G, Mazerat S, Compain JD, Mialane P, Dolbecq A, Rivière E, Wernsdorfer W, Biboum RN, Keita B, Nadjo L, Filoramo A, Bourgoin JP, Mallah T. Magnetic bistability of individual single-molecule magnets grafted on single-wall carbon nanotubes. Angew Chem Int Ed, 48, 4949 (2009). crossref(new window)

Kawasaki N, Wang H, Nakanishi R, Hamanaka S, Kitaura R, Shinohara H, Yokoyama T, Yoshikawa H, Awaga K. Nanohybridization of polyoxometalate clusters and single-wall carbon nanotubes: applications in molecular cluster batteries. Angew Chem Int Ed, 50, 3471 (2011). crossref(new window)

Akter T, Hu K, Lian K. Investigations of multilayer polyoxometalates-modified carbon nanotubes for electrochemical capacitors. Electrochim Acta, 56, 4966 (2011). crossref(new window)

Kume K, Kawasaki N, Wang H, Yamada T, Yoshikawa H, Awaga K. Enhanced capacitor effects in polyoxometalate/graphene nanohybrid materials: a synergetic approach to high performance energy storage. J Mater Chem A, 2, 3801 (2014). crossref(new window)

Kim Y, Shanmugam S. Polyoxometalate-reduced graphene oxide hybrid catalyst: synthesis, structure, and electrochemical properties. ACS Appl Mater Interfaces, 5, 12197 (2013). crossref(new window)

Suárez-Guevara J, Ruiz V, Gómez-Romero P. Stable graphene-polyoxometalate nanomaterials for application in hybrid supercapacitors. Phys Chem Chem Phys, 16, 20411 (2014). crossref(new window)

Yang M, Choi BG, Jung SC, Han YK, Huh YS, Lee SB. Polyoxometalate-coupled graphene via polymeric ionic liquid linker for supercapacitors. Adv Funct Mater, 24, 7301 (2014). crossref(new window)

Zhang Y, Shen Y, Yuan J, Han D, Wang Z, Zhang Q, Niu L. Design and synthesis of multifunctional materials based on an ionic-liquid backbone. Angew Chem Int Ed, 45, 5867 (2006). crossref(new window)

Rubinson JF, Kayinamura YP. Charge transport in conducting polymers: insights from impedance spectroscopy. Chem Soc Rev, 38, 3339 (2009). crossref(new window)

Portet C, Lillo-Ródenas MÁ, Linares-Solano A, Gogotsi, Y. Capacitance of KOH activated carbide-derived carbons. Phys Chem Chem Phys, 11, 4943 (2009). crossref(new window)

Sheng K, Sun Y, Li C, Yuan W, Shi G. Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering. Sci Rep, 2, 247 (2012). crossref(new window)