Oxidation of Elemental Mercury using Dielectric Barrier Discharge Process

유전체 장벽 방전을 이용한 원소수은의 산화특성

  • Byun, Youngchul (School of Environmental Science and Technology, POSTECH) ;
  • Ko, Kyung Bo (School of Environmental Science and Technology, POSTECH) ;
  • Cho, Moo Hyun (School of Environmental Science and Technology, POSTECH) ;
  • NamKung, Won (School of Environmental Science and Technology, POSTECH) ;
  • Shin, Dong Nam (Research Institute of Industrial Science & Technology) ;
  • Koh, Dong Jun (Research Institute of Industrial Science & Technology) ;
  • Kim, Kyoung Tae (Research Institute of Industrial Science & Technology)
  • Received : 2006.10.18
  • Accepted : 2006.11.17
  • Published : 2007.04.30

Abstract

We have investigated the oxidation of gas phase elemental mercury using dielectric barrier discharge (DBD). In the DBD process, active species such as $O_3$, OH, O and $HO_2$ are generated by collisions between electrons and gas molecules. Search active species convert elemental mercury into mercury oxide which is deposited into the wall of DBD reactor because of its low vapor pressure. The oxidation efficiency of elemental mercury has been decreased from 60 to 30% by increasing the initial concentration of the elemental mercury from 72 to $655{\mu}g/Nm^3$. The gas retention time at the DBD reactor has showed the little effect on the oxidation efficiency. The more oxygen concentration has induced the more oxidation of elemental mercury, whereas there has been no appreciable oxidation within pure $N_2$ discharge. It has indicated that oxygen atom and ozone, generated in air condition determine the oxidation of elemental mercury.

대표적인 수은 발생원인 도시폐기물 소각로와 화력 발전소 등지에서 배출되는 원소수은($Hg^0$)은 산화수은($Hg^{2+}$) 및 입자상 수은($Hg^p$)과 달리 기존의 대기오염 방지시설로 제거하기 난해한 편이다. 그로 인해 원소수은의 효율적 제거에 대한 많은 연구가 진행중이며, 이 연구에서는 저온 플라즈마(non-thermal plasma)의 하나인 유전체 장벽 방전(dielectric barrier discharge: DBD) 공정을 이용하여 원소수은 산화에 관한 실험을 수행하였다. 실험 결과, 공기 상의 DBD 공정에서는 생성되는 산소 원자와 오존에 의해서 원소수은이 산화수은으로 전환됨을 알 수 있었으며, 원소수은의 산화율을 결정하는 주된 변수는 반응기에 주입되는 에너지 밀도임을 확인할 수 있었다.

Keywords

References

  1. Annau, Z. and Cuom, V., 'Mechanisms of Neurotoxicity and Their Relationship to Behavioral Change,' Toxicology, 49, 219-225(1998)
  2. Carpi, A., 'Mercury from Combustion Sources : A Review of the Chemical Species Emitted and Their Transport in the Atmosphere,' Water, Air Soil Pollut., 98, 241-254(1997)
  3. Schroeder, W. H. and Munthe, J., 'Atmospheric Mercury-an Overview,' Atmospheric Environment, 32(5), 809-822(1998) https://doi.org/10.1016/S1352-2310(97)00293-8
  4. Otani, Y., Kanaoka C., Usui C., Matsui S. and Emi H., 'Adsorption of Mercury Vapor on Particles,' Environ. Sci. & Tech., 20(7), 735-738(1986) https://doi.org/10.1021/es00149a014
  5. Lee, S. J., Seo, Y. C., Jurng, J. S. and Lee, T. G., 'Removal of Gas-phase Elemental Mercury by Iodine- and Chlorine-impregnated Activated Carbons,' Atmospheric Environment, 38, 4887-4893(2004) https://doi.org/10.1016/j.atmosenv.2004.05.043
  6. Lee, T. G., Biswas, P. and Hedrick, E., 'Overall Kinetics of Heterogeneous Elementary Mercury Reaction on $TiO_2$ Sorbent Particles with UV Irradiation,' Ind. Eng. Chem. Res., 43, 1411-1417(2004) https://doi.org/10.1021/ie0303707
  7. Granite, J. E., and Pennline, H. W., 'Photochemical Removal of Mecury from Flue Gas,' Ind. Eng. Chem. Res., 41, 5470-5476(2002) https://doi.org/10.1021/ie020251b
  8. Yoon, Y. I., Choi, W. K., Lee, S. H. and Lee, H. K., 'Status of Combined SOx, NOx and Mercury Contril Technology from the Flue Gag,' Pros. Ind. Chem., 8(1), 12-25(2005)
  9. Clements, J. S., Mizuno, A., Finney, W. C. and Davis, R. H., 'Combined Removal of SO2, NOx and Fly Ash from Simulated Flue Gas Using Pulsed Streamer Corona,' IEEE. Trans. Ind. Applicat., 25(1), 62-69(1989) https://doi.org/10.1109/28.18870
  10. Urashima, K. and Chang, J. S., 'Removal of Volatile Organic Compounds From Air Streams and Industrial Flue Gases by Non-thermal Plasma Technology,' IEEE. Trans. Dielec. Elec. Insul., 7(5), 602-614(2001)
  11. Lee, Y. H., Jung, W. S., Choi, Y. R., Oh, J. S., Jang, S. D., Son, Y. G., Cho, M. H., Nam kung, W., Koh, D. J., Mok, Y. S. and Chung, J. W., 'Application of Pulsed Corona Induced Plasma Chemical Process to an Industrial Incinerator,' Environ. Sci. & Tech., 37(7), 2563-2567(2003) https://doi.org/10.1021/es0261123
  12. Futamura, S., Einaga, H., Zhang, A., 'Comparison of Reactor Performance in the Non-thermal Plasma Chemical Processing of Hazardous Air Pollutants,' IEEE Trans. Ind. Applicat., 37, 978-985(2001) https://doi.org/10.1109/28.936387
  13. Liang, X., Looy, P. C., Jayaram, S., Berezin, A. A., M. S. and Chang, J. S., 'Mercury and Other Trace Elements Removal Characteristics of DC and Pulse-energized Electrostatic Precipitator,' IEEE Trans. Ind. Applicat., 38(1), 69-76(2002) https://doi.org/10.1109/28.980355
  14. Masuda, S., Wu, Y., Urabe, T. and Ono, Y., 'Pulse Corona Induced Chemical Process for DeNOx, DeSOx, and Mercury Vapor Control of Combustion Gas,' Proc. Of 3rd Int. Conf. on Electrostatic Precipitation, Abano, Italy, October 667-676(1987)
  15. Lee, Y. H., Chung, J. W., Choi, Y. R., Chung, J. S., Cho, M. H. and Namkung, W., 'NOx Removal Characteristics in Plasma Plus Catalyst Hybrid Process,' Plasma Chem. Plasma Proc., 24(2), 137-154(2004) https://doi.org/10.1023/B:PCPP.0000013195.87201.4a
  16. Morita, M., Yoshinaga, J. and Edmonds, J. S., 'The Determination of Mercury Species in Environmental and Biological Samples,' Pure & Appl. Chem., 70(8), 1585-1615(1998) https://doi.org/10.1351/pac199870081585
  17. Pitoniak, E., Wu, C. Y., Mazyck, D. W., Powers, K. W. and Sigmund W., 'Adsorption Enhancement Mechanisms of Silica-titania Nanocomposites for Elemental Mercury Vapor Removal,' Environ. Sci. Technol., 39(5), 1269-1274(2005) https://doi.org/10.1021/es049202b
  18. Okabe, H., Photochemistry of Small Molecules, A Wiley-Interscience Publication(1978)
  19. Rice, R. G. and Netzer, A., Handbook of Ozone Technology and applications. Vol. 1 ANN ARBOR SCIENCE(1982)
  20. Pal, B. and Ariya, P. A., 'Studies of Ozone Initiated Reactions of Gaseous Mercury: Kinetics, Product Studies, and Atmospheric Implications,' Phys. Chem. Chem. Phys., 6, 572-579(2004) https://doi.org/10.1039/b311150d
  21. Lin, C.-J., Pehkonen, S. O., 'The Chemistry of Atmospheric Mercury: A Review,'Atmospheric Environment, 33, 2067-2079(1999) https://doi.org/10.1016/S1352-2310(98)00387-2
  22. Calvert, J. G., Lindberg, S. E., 'Mechanisms of Mercury Removal by $O_3$ and OH in the Atmosphere,' Atmospheric Environment, 39, 3355-3367(2005) https://doi.org/10.1016/j.atmosenv.2005.01.055
  23. Thomsen, E. L. and Egsgaard, H., 'Rate of Reaction of Dimethylmercury with Oxygen Atoms in the Gas Phase,' Chem. Phys. Lett., 125(4), 378-382(1986) https://doi.org/10.1016/0009-2614(86)85176-4
  24. Sommar, J., Gardfeldt, K., Stromberg, D. and Feng, X., 'A Kinetic Study of the Gas-phase Reaction Between the Hydroxyl Radical and Atomic Mercury,' Atmospheric Environment, 35, 3049-3054 (2001) https://doi.org/10.1016/S1352-2310(01)00108-X
  25. Pal, B. and Ariya, P. A., 'Gas-phase HO-initiated Reactions of Elementary Mercury: Kinetics and Product Studies, and Lications,' Environ. Sci. & Tech., 38(12), 5555-5566(2004) https://doi.org/10.1021/es0494353