JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Stagnation of Droplet for Efficient Merging in Microfluidic System
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Korean Chemical Engineering Research
  • Volume 52, Issue 1,  2014, pp.106-112
  • Publisher : The Korean Institute of Chemical Engineers
  • DOI : 10.9713/kcer.2014.52.1.106
 Title & Authors
Stagnation of Droplet for Efficient Merging in Microfluidic System
Jin, Si Hyung; Kim, Jongmin; Jang, Sung-Chan; Noh, Young Moo; Lee, Chang-Soo;
  PDF(new window)
 Abstract
Here, we demonstrated the optimum design of pillar microstructure for efficient microdroplet merging. The microfluidic device mainly consisted of programmable microvalves and pillar microstructures. Based on the system, aqueous droplets were continuously generated at T-junction using actuating of integrated programmable microvalaves under the immiscible continuous fluid (mineral oil containing 0.5 wt% Span 80). The principle of merging process depended on the competitive correlation of hydraulic pressure of continuous phase and Laplace pressure of the droplet. We found that the design of the micropillars controls above two pressures. Finally, it was demonstrated that the microfluidic system could be able to efficient biochemical reaction. We expect that the microfluidic system is useful analytical or reaction tools in fundamental science, biotechnology, and chemical engineering.
 Keywords
Microfluidics;Droplet;Microvalve;Pillar;Merging;
 Language
Korean
 Cited by
1.
은 나노입자 전극과 패러데이 모트를 이용한 미세유체 피코리터 주입기의 전압효율 상승,노영무;진시형;정성근;김남영;노창현;이창수;

Korean Chemical Engineering Research, 2015. vol.53. 4, pp.472-477 crossref(new window)
2.
미세유체 장치에서 수거 방법에 따른 펙틴 하이드로겔 입자의 특성 비교,김채연;박기수;강성민;김종민;송영신;이창수;

Korean Chemical Engineering Research, 2015. vol.53. 6, pp.740-745 crossref(new window)
1.
Increase in Voltage Efficiency of Picoinjection using Microfluidic Picoinjector Combined Faraday Moat with Silver Nanoparticles Electrode, Korean Chemical Engineering Research, 2015, 53, 4, 472  crossref(new windwow)
 References
1.
Whitesides, G. M., "The Origins and the Future of Microfluidics," Nature, 442(7101), 368-373(2006). crossref(new window)

2.
Jeong, H. H., Lee, S. H. and Lee, C. S., "Pump-less static Microfluidic Device for Analysis of Chemotaxis of PseudomoNas Aeruginosa Using Wetting and Capillary Action," Biosens. Bioelectron., 47, 278-84(2013). crossref(new window)

3.
Jang, S. C., Jeong, H. H. and Lee, C. S., "Analysis of Pseudomonas Aeruginosa Motility in Microchannels," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 50, 743-748(2012). crossref(new window)

4.
Min, S. K., Lee, B. M., Hwang, J. H., Ha, S. H. and Shin, H. S., "Mathematical Analysis of Colonial Formation of Embryonic Stem Cells in Microfluidic System," Korean J. Chem. Eng., 29(3), 392-395(2012). crossref(new window)

5.
Huh, Y. S., Jeon, S. J., Lee, E. Z., Park, H. S. and Hong, W. H., "Microfluidic Extraction Using Two Phase Laminar Flow for Chemical and Biological Applications," Korean J. Chem. Eng., 28(3), 633-642(2011). crossref(new window)

6.
Utada, A. S., Lorenceau, E., Link, D. R., Kaplan, P. D., Stone, H. A. and Weitz, D. A., "Monodisperse Double Emulsions Generated From a Microcapillary Device," Science, 308(5721), 537-541(2005). crossref(new window)

7.
Choi, C. H., Weitz, D. A. and Lee, C. S., "One Step Formation of Controllable Complex Emulsions: From Functional Particles to Simultaneous Encapsulation of Hydrophilic and Hydrophobic Agents into Desired Position," Adv. Mater., 25(18), 2536-2541 (2013). crossref(new window)

8.
Kang, S. M., Choi, C. H., Hwang, S., Jung, J. M. and Lee, C. S., "Microfluidic Preparation of Monodisperse Multiple Emulsion using Hydrodynamic Control," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 50, 733-737(2012). crossref(new window)

9.
Churski, K., Kaminski, T. S., Jakiela, S., Kamysz, W., Baranska- Rybak, W., Weibel, D. B. and Garstecki, P., "Rapid Screening of Antibiotic Toxicity in an Automated Microdroplet System," Lab Chip, 12(9), 1629-1637(2012). crossref(new window)

10.
Hung, L. H., Choi, K. M., Tseng, W. Y., Tan, Y. C., Shea, K. J. and Lee, A. P., "Alternating Droplet Generation and Controlled Dynamic Droplet Fusion in Microfluidic Device for CdS Nanoparticle Synthesis," Lab Chip, 6(2), 174-178(2006). crossref(new window)

11.
Frenz, L., El Harrak, A., Pauly, M., Begin-Colin, S., Griffiths, A. D. and Baret, J. C., "Droplet-based Microreactors for the Synthesis of Magnetic Iron Oxide Nanoparticles," Angew. Chem.-Int. Edit., 47(36), 6817-6820(2008). crossref(new window)

12.
Niu, X. Z., Gielen, F., Edel, J. B. and deMello, A. J., "A Microdroplet Dilutor for High-throughput Screening," Nat. Chem., 3(6), 437-442(2011). crossref(new window)

13.
Link, D. R., Grasland-Mongrain, E., Duri, A., Sarrazin, F., Cheng, Z. D., Cristobal, G., Marquez, M. and Weitz, D. A., "Electric Control of Droplets in Microfluidic Devices," Angew. Chem.-Int. Edit., 45(16), 2556-2560(2006). crossref(new window)

14.
Mazutis, L., Baret, J. C., Treacy, P., Skhiri, Y., Araghi, A. F., Ryckelynck, M., Taly, V. and Griffiths, A. D., "Multi-step Microfluidic Droplet Processing: Kinetic Analysis of an in vitro Translated Enzyme," Lab Chip, 9(20), 2902-2908(2009). crossref(new window)

15.
Baroud, C. N., de Saint Vincent, M. R. and Delville, J. P., "An Optical Toolbox for Total Control of Droplet Microfluidics," Lab Chip, 7(8), 1029-1033(2007). crossref(new window)

16.
Tan, Y. C., Fisher, J. S., Lee, A. I., Cristini, V. and Lee, A. P., "Design of Microfluidic Channel Geometries for the Control of Droplet Volume, Chemical Concentration, and Sorting," Lab Chip, 4(4), 292-298(2004). crossref(new window)

17.
Kohler, J. M., Henkel, T., Grodrian, A., Kirner, T., Roth, M., Martin, K. and Metze, J., "Digital Reaction Technology by Micro Segmented Flow - Components, Concepts and Applications," Chem. Eng. J., 101(1-3), 201-216(2004). crossref(new window)

18.
Fidalgo, L. M., Abell, C. and Huck, W. T. S., "Surface-induced Droplet Fusion in Microfluidic Devices," Lab Chip, 7(8), 984-986(2007). crossref(new window)

19.
Niu, X., Gulati, S., Edel, J. B. and deMello, A. J., "Pillar-induced Droplet Merging in Microfluidic Circuits," Lab Chip, 8(11), 1837-1841(2008). crossref(new window)

20.
Guo, F., Liu, K., Ji, X. H., Ding, H. J., Zhang, M., Zeng, Q. A., Liu, W., Guo, S. S. and Zhao, X. Z., "Valve-based Microfluidic Device for Droplet On-demand Operation and Static Assay," Appl. Phys. Lett., 97, 233701 (2010). crossref(new window)

21.
Unger, M. A., Chou, H. P., Thorsen, T., Scherer, A. and Quake, S. R., "Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography," Science, 288(5463), 113-116(2000). crossref(new window)

22.
Zeng, S. J., Li, B. W., Su, X. O., Qin, J. H. and Lin, B. C., "Microvalve- actuated Precise Control of Individual Droplets in Microfluidic Devices," Lab Chip, 9(10), 1340-1343(2009). crossref(new window)