JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effects of Solutally Dominant Convection on Physical Vapor Transport for a Mixture of Hg2Br2 and Br2 under Microgravity Environments
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Solutally Dominant Convection on Physical Vapor Transport for a Mixture of Hg2Br2 and Br2 under Microgravity Environments
Kim, Geug-Tae; Kwon, Moo Hyun;
  PDF(new window)
 Abstract
The convective flow structures in the vapor phase on earth are shown to be single unicellular, indicating the solutally dominant convection is important. These findings reflect that the total molar fluxes show asymmetrical patterns in a viewpoint of interfacial distributions. With decreasing the gravitational level form down to , the total molar fluxes decay first order exponentially. It is also found that the total molar fluxes decay first order exponentially with increasing the partial pressure of component B, PB (Torr) form 5 Torr up to 400 Torr. Under microgravity environments less than , a diffusive-convection mode is dominant and, results in much uniformity in front of the crystal regions in comparisons with a normal gravity acceleration of .
 Keywords
Solutally Dominant Convection;Microgravity Environment;
 Language
English
 Cited by
1.
염화제일수은과 일산화질소의 물리적 승화법 공정에서의 확산-대류에 미치는 에스펙트 비율의 영향,김극태;

공업화학, 2015. vol.26. 6, pp.746-752 crossref(new window)
2.
지상 및 미소중력 환경에서 물리적 승화법 공정에 미치는 불순물의 영향 분석: 염화제일수은에 대한 응용성,김극태;권무현;

공업화학, 2016. vol.27. 3, pp.335-341 crossref(new window)
1.
Effects of Aspect Ratio on Diffusive-Convection During Physical Vapor Transport of Hg2Cl2 with Impurity of NO, Applied Chemistry for Engineering, 2015, 26, 6, 746  crossref(new windwow)
2.
Numerical Analysis for Impurity Effects on Diffusive-convection Flow Fields by Physical Vapor Transport under Terrestrial and Microgravity Conditions: Applications to Mercurous Chloride, Applied Chemistry for Engineering, 2016, 27, 3, 335  crossref(new windwow)
 References
1.
Choubey, A., Veeramani, P., Pym, A. T. G., Mullins, J. T., Sellin, P. J., Brinkman, A. W., Radley, I., Basu, A. and Tanner, B. K., "Growth by the Multi-tube Physical Vapour Transport Method and Characterization of Bulk (Cd, Zn)Te," J. Cryst. Growth, 352, 120-123(2012). crossref(new window)

2.
Shi, Y., Yang, J. F., Liu, H., Dai, P., Liu, B., Jin, Z., Qiao, G. and Li, H., "Fabrication and Mechanism of 6H-type Silicon Carbide Whiskers by Physical Vapor Transport Technique," J. Cryst. Growth, 349, 68-74(2012). crossref(new window)

3.
Zotov, N., Baumann, S., Meulenberg, W. A. and VaBen, R., "La-Sr-Fe-Co Oxygen Transport Membranes on Metal Supports Deposited by Low Pressure Plasma Spraying-Physical Vapour Deposition," J. Membr. Sci., 442, 119-123(2013). crossref(new window)

4.
Fanton, M. A., Li, Q., Polyakov, A. Y., Skowronski, M., Cavalero, R. and Ray, R., "Effects of Hydrogen on the Properties of SiC Crystals Grown by Physical Vapor Transport: Thermodynamic Considerations and Experimental Results," J. Cryst. Growth, 287, 339-343(2006). crossref(new window)

5.
Su, C. H., George, M. A., Palosz, W., Feth, S. and Lehoczky, S. L., "Contactless Growth of ZnSe Single Crystals by Physical Vapor Transport," J. Cryst. Growth, 213, 267-275(2000). crossref(new window)

6.
Paorici, C., Razzetti, C., Zha, M., Zanotti, L., Carotenuto, L. and Ceglia, M., "Physical Vapour Transport of Urotropine: One-Dimensional Model," Mater. Chem. Phys., 66, 132-137(2000). crossref(new window)

7.
Lee, Y. K. and Kim, G. T., "Effects of Convection on Physical Vapor Transport of $Hg_2Cl_2$ in the Presence of Kr- Part I: Under Microgravity Environments," J. Korean Crystal Growth and Crystal Tech., 23, 20-26(2013). crossref(new window)

8.
Greenwell, D. W., Markham, B. L. and Rosenberger, F., "Numerical Modeling of Diffusive Physical Vapor Transport in Cylindrical Ampoules," J. Cryst. Growth, 51, 413-425(1981). crossref(new window)

9.
Markham, B. L., Greenwell, D. W. and Rosenberger, F., "Numerical Modeling of Diffusive-Convective Physical Vapor Transport in Cylindrical Vertical Ampoules," J. Cryst. Growth, 51, 426-437 (1981). crossref(new window)

10.
Jhaveri, B. S. and Rosenberger, F., "Expansive Convection in Vapor Transport across Horizontal Enclosures," J. Cryst. Growth, 57, 57-64(1982). crossref(new window)

11.
Markham, B. L. and Rosenberger, F., "Diffusive-Convective Vapor Transport across Horizontal and Inclined Rectangular Enclosures," J. Cryst. Growth, 67, 241-254(1984). crossref(new window)

12.
Nadarajah, A., Rosenberger, F. and Alexander, J., "Effects of Buoyancy-Driven Flow and Thermal Boundary Conditions on Physical Vapor Transport," J. Cryst. Growth, 118, 49-59(1992). crossref(new window)

13.
Zhou, H., Zebib, A., Trivedi, S. and Duval, W. M. B., "Physical Vapor Transport of Zinc-Telluride by Dissociative Sublimation," J. Cryst. Growth, 167, 534-542(1996). crossref(new window)

14.
Duval, W. M. B., "Convective Effects during the Physical Vapor Transport Process-I: Thermal Convection," J. Mater. Proc. Manufacturing Sci., 1, 83-104(1992).

15.
Duval, W. M. B., "Convective Effects during the Physical Vapor Transport Process-II: Thermosolutal Convection," J. Mater. Proc. Manufacturing Sci., 1, 295-313(1993).

16.
Duval, W. M. B., Glicksman, N. E. and Singh, B., "Physical Vapor Transport of Mercurous Chloride Crystals; Design of a Microgravity Experiment," J. Cryst. Growth, 174, 120-129(1997). crossref(new window)

17.
Tebbe, P. A., Loyalka, S. K. and Duval, W. M. B., "Finite Element Modeling of Asymmetric and Transient Flow Fields during Physical Vapor Transport," Finite Elements in Analysis and Design, 40, 1499-1519(2004). crossref(new window)

18.
Kim, G. T., Duval, W. M. B., Singh, N. B. and Glickman, M. E., "Thermal Convective Effects on Physical Vapor Transport Growth of Mercurous Chloride Crystals ($Hg_2C1_2$) for Axisymmetric 2-D Cylindrical Enclosure," Model. Simul. Mater. Sci. Eng., 3, 331-357(1995). crossref(new window)

19.
Kim, G. T., Duval, W. M. B. and Glickman, M. E., "Thermal Convection in Physical Vapour Transport of Mercurous Chloride ($Hg_2C1_2$) for Rectangular Enclosures," Model. Simul. Mater. Sci. Eng., 5, 289-309(1997). crossref(new window)

20.
Kim, G. T., Duval, W. M. B. and Glickman, M. E., "Effects of Asymmetric Temperature Profiles on Thermal Convection during Physical Vapor Transport of $Hg_2C1_2$," Chem. Eng. Comm., 162, 45-61 (1997). crossref(new window)

21.
Rosenberger, F. and Muller, G., "Interfacial Transport in Crystal Growth, a Parameter Comparison of Convective Effects," J. Cryst. Growth, 65, 91-104(1983). crossref(new window)