JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Solvothermal Synthesis and Characterization of Cu3(BTC)2 Tubular Membranes Using Surface Modified Supports
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Korean Chemical Engineering Research
  • Volume 52, Issue 2,  2014, pp.214-218
  • Publisher : The Korean Institute of Chemical Engineers
  • DOI : 10.9713/kcer.2014.52.2.214
 Title & Authors
Solvothermal Synthesis and Characterization of Cu3(BTC)2 Tubular Membranes Using Surface Modified Supports
Noh, Seung-Jun; Kim, Jinsoo;
  PDF(new window)
 Abstract
In this study, nanoporous membranes were synthesized on macroporous alumina tube supports by solvothermal method. It is very difficult to prepare uniform and crack-free layer on macroporous alumina support by in situ solvothermal method. In this study, continuous and crack-free tubular membranes could be obtained by in situ solvothermal process after surface modification of alumina support. The surface modification was conducted by spraying Cu precursor solution on the alumina support heated at . The prepared tubular membranes were characterized by XRD, FE-SEM and gas permeation experiments. permeance through thick tubular membrane was calculated to be by single gas permeation test, with the ideal selectivities of $H_2/N_2
 Keywords
;HKUST-1;Solvothermal;Metal-organic Frameworks;
 Language
Korean
 Cited by
 References
1.
Lee, Y. T. and Jee, K. Y., "Preparation of Organic/inorganic Siloxane Composite Membranes and Concentration of n-butanol from ABE Solution by Pervaporation," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 51, 580-586(2013). crossref(new window)

2.
Chen, Y., Xiangli, Fi., Jin, W. and Xu, N., "Organic-inorganic Composite Pervaporation Membranes Prepared by Self-assembly of Polyelectrolyte Multilayers on Macroporous Ceramic Supports," J. Memb. Sci., 302, 78-86(2007). crossref(new window)

3.
Lee, L., Park, S.-J. and Kim, S., "Study on Ionic Conductivity and Crystallinity of PEO/PMMA Polymer Composite Electrolyte Containing $TiO_2$ Filler," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 49, 758-763(2011). crossref(new window)

4.
Pakizeh, M., Moghadam, A. N., Omidkhah, M. R. and Namvar-Mahboub, M., "Preparation and Characterization of Dimethyldichlorosilane Modified $SiO_2$/PSf Nanocomposite Membrane," Korean J. Chem. Eng., 30, 751-760(2013). crossref(new window)

5.
Li, H., Eddaoudi, M., O'Keeffe, M. and Yaghi, O. M., "Design and Synthesis of An Exceptionally Stable and Highly Porous Metal-organic Framework," Nature, 402, 276-279(1999). crossref(new window)

6.
Rowsell, J. L. C., Millward, A. R., Park, K. S. and Yaghi, O. M., "Hydrogen Sorption in Functionalized Metal-organic Frameworks," J. Am. Chem. Soc., 126, 5666-5667(2004). crossref(new window)

7.
Li, J. R., Kuppler, R. J. and Zhou, H. C., "Selective Gas Adsorption and Separation in Metal-organic Frameworks," Chem. Soc. Rev., 38, 1477-1504(2009). crossref(new window)

8.
Zou, X. Q., Zhu, G. S., Hewitt, I. J., Sun, F. X. and Qiu, S. L., "Synthesis of a Metal-organic Framework Film by Direct Conversion Technique for VOCs Sensing," Dalton Trans., 3009-3013(2009).

9.
Cho, S. H., Ma, B. Q., Nguyen, S. T., Hupp, J. T. and Albrecht-Schmitt, T. E., "A Metal-organic Framework Material That Functions as an Enantioselective Catalyst for Olefin Epoxidation," Chem. Commun., 2563-2565(2006).

10.
Ma, L. Q., Abney, C. and Lin, W. B., "Enantioselective Catalysis with Homochiral Metal-organic Frameworks," Chem. Soc. Rev., 38, 1248-1256(2009). crossref(new window)

11.
Shah, M., McCarthy, M. C., Sachdeva, S., Lee, A. K. and Jeong, H. K., "Current Status of Metla-Organic Framework Membranes for Gas Separations: Promises and Challenges," Ind. Eng. Chem. Res., 51, 2179-2199(2012). crossref(new window)

12.
Gascon, J., Aguado, S. and Kepteijn, F., "Manufacture of Dense Coatings of $Cu_3(BTC)_2$ (HKUST-1) on $\alpha$-alumina", Microp. Mesop. Mater., 113, 132-138(2008). crossref(new window)

13.
Guo, H., Zhu, G., Hewitt, I. J. and Qiu, S., "Twin Copper Source Growth of MetalOrganic Framework Membrane: $Cu_3(BTC)_2$ with High Permeability and Selectivity for Recycling $H_2$," J. Am. Chem. Soc., 131, 1646-1647(2009). crossref(new window)

14.
Guerrero, V. V., Yoo, Y., McCarthy, M. C. and H. K. Jeong, "HKUST-1 Membranes on Porous Supports Using Secondary Growth," J. Mater. Chem., 20, 3938-3943(2010). crossref(new window)

15.
Noh, S. J., Kwon, H. T. and Kim, J., "Synthesis and Characterization of $Cu_3(BTC)_2$ Membranes by Thermal Spray Seeding and Secondary Growth," J. Nanosci. Nanotechnol., 13, 5671-5674(2013). crossref(new window)

16.
S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, and I. D. Williams, "A Chemically Functionalizable Nanoporous Material $[Cu_3(TMA)_2(H_2O)_3]_n$," Science, 283, 1148-1150(1999). crossref(new window)