Advanced SearchSearch Tips
Electrochemical Reduction Process for Pyroprocessing
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Korean Chemical Engineering Research
  • Volume 52, Issue 3,  2014, pp.279-288
  • Publisher : The Korean Institute of Chemical Engineers
  • DOI : 10.9713/kcer.2014.52.3.279
 Title & Authors
Electrochemical Reduction Process for Pyroprocessing
Choi, Eun-Young; Hong, Sun-Seok; Park, Wooshin; Im, Hun Suk; Oh, Seung-Chul; Won, Chan Yeon; Cha, Ju-Sun; Hur, Jin-Mok;
  PDF(new window)
Nuclear energy is expected to meet the growing energy demand while avoiding CO2 emission. However, the problem of accumulating spent fuel from current nuclear power plants which is mainly composed of uranium oxides should be addressed. One of the most practical solutions is to reduce the spent oxide fuel and recycle it. Next-generation fuel cycles demand innovative features such as a reduction of the environmental load, improved safety, efficient recycling of resources, and feasible economics. Pyroprocessing based on molten salt electrolysis is one of the key technologies for reducing the amount of spent nuclear fuel and destroying toxic waste products, such as the long-life fission products. The oxide reduction process based on the electrochemical reduction in a LiCl- electrolyte has been developed for the volume reduction of PWR (Pressurized Water Reactor) spent fuels and for providing metal feeds for the electrorefining process. To speed up the electrochemical reduction process, the influences of the feed form for the cathode and the type of anode shroud on the reduction rate were investigated.
Pyroprocessing;Electrochemical Reduction;Molten Salt;Uranium Oxide;
 Cited by

Nuclear Engineering and Technology, 2015. vol.47. 5, pp.588-595 crossref(new window)
LiCl 용융염에서 전해환원법을 통한 La0.5Nd0.5Ni5 합금 제조,임종길;정상문;

Korean Chemical Engineering Research, 2015. vol.53. 2, pp.145-149 crossref(new window)
Alloy by an Electrochemical Reduction in Molten LiCl, Korean Chemical Engineering Research, 2015, 53, 2, 145  crossref(new windwow)
IAEA, International Status and Prospects of Nuclear Power, 2008.

IAEA, Spent Fuel Reprocessing Options, IAEA-TECDOC-1587, 2008.

Willit, J. L., Miller, W. E. and Battles, J. E., "Electrorefining of Uranium and Plutonium-A Literature Review," J. Nucl. Mater., 195, 229-249(1992). crossref(new window)

Laidler, J. J., Battles, J. E., Miller, W. E. and Ackerman, J. P. and Carls, E. L., "Development of Pyroprocessing Technology," Prog. Nucl. Energy., 31, 131-140(1997). crossref(new window)

Benedict, R. W. and McFarlane, H. F., "EBR-II Spent Fuel Treatment Demonstration Project Status," Radwaste Magazine., 5, 23 (1998).

Karell, E. J. and Gourishankar, K. V., "Separation of Actinides from LWR Spent Fuel Using Molten Salt Based Electrochemical Process," Nucl. Tech., 136, 342-353(2001).

Konings, J., Serp. R. J. M., Malmbeck, R., Rebizant, J., Scheppler, C. and Glatz, J.-P., "Electrochemical Behavior of Plutonium ion in LiCl-KCl Eutectic Melts," J. Electroanal. Chem., 561, 143-148 (2004). crossref(new window)

Goff, K. M., Benedict, R. W., Howden, K. L., Teske, G. M. and Johnson, T. A., "Pyrochemical Treatment of Spent Nuclear Fuel," Proc. of Global 2005, Tsukuba, Japan, October 9-13(2005).

Inoue, T. and Koch, L., "Development of Pyroprocessing and Its Future Direction," Nucl. Eng. Technol., 40, 183-190(2008). crossref(new window)

Simpson, M. F. and Herrmann, S. D., "Modeling the Pyrochemical Reduction of Spent $UO_2$ Fuel in a Pilot-Scale Reactor," Nucl. Technol., 162, 179-183(2008).

Yoo, J.-H., Seo, C.-S., Kim, E.-H. and Lee, H., "A Conceptual Study of Pyroprocessing for Recovering Actinides," Nucl. Eng. Technol., 40, 581-592(2008). crossref(new window)

Kitawaki, S., Shinozaki, T., Fukushima, M., Usami, T., Yahagi, N. and Kurata, M., "Recovery of U-Pu Alloy from MOX Using Pyroprocess Series," Nucl. Technol., 162, 118-123(2008).

Koyama, T., Sakamura, Y., Ogata, T. and Kobayashi, H., "Pyroprocess and Metal Fuel Development for Closing Actinide Fuel Cycle with Reduced Waste Burden," Proc. Of Global 2009, Paris, France, September 6-11(2009).

Murakami, T., Uozumi, K., Sakamura, Y., Iizuka, M., Ohta, H., Ogata, T. and Koyama, T., "Recent Achievements and Remaining Challenges on Pyrochemical Reprocessing in CRIEPI," Proc. Of the First ACSEPT International Workshop Lisbon, Portugal, March 31-April 2(2010).

Song, K.-C., Lee, H., Hur, J.-M., Kim, J.-G., Ahn, D.-H. and Cho, Y.-Z., "Status of Pyroprocessing Technology Development in Korea," Nucl. Eng. Technol., 42, 131-144(2010). crossref(new window)

Inoue, T., Koyama, T. and Arai, Y., "State of the Art of Pyroprocessing Technology in Japan," Energy Procedia., 7, 405-413(2011). crossref(new window)

Nagarajan, K., Prabhakara Reddy, B., Ghosh, S., Ravisankar, G., Mohandas, K. S., Kamachi Mudali, U., Kutty, K. V. G., Kasi Viswanathan, K. V., Anand Babu, C., Kalyanasundaram, P., Vasudeva Rao, P. R. and Raj, B., "Development of Pyrochemical Reprocessing for Spent Metal Fuels," Energy Procedia., 7, 405-413(2011). crossref(new window)

Goff, K. M., Wass, J. C., Marsden, K. C. and Teske, G. M., "Electrochemical Reprocessing of Used Nuclear Fuel," Nucl. Eng. Technol., 43, 335-342(2011). crossref(new window)

Lee, H., Park, G.-I., Kang, K.-H., Hur, J.-M., Kim, J.-G., Ahn, D.-H., Cho, Y.-Z. and Kim, E. H., "Pyroprocessing Technology Development at KAERI," Nucl. Eng. Technol., 43, 317-328(2011). crossref(new window)

Chen, G. Z., Fray, D. J. and Farthing, T. W., "Direct Electrochemical Reduction of Titanium Dioxide to Titanium in Molten Calcium Chloride," Nature., 407, 361-364(2000). crossref(new window)

Yasuda, K., Nohira, T., Hagiwara, R. and Ogata, Y. H. "Direct Electrolytic Reduction of Solid $SiO_2$ in Molten $CaCl_2$ for the Production of Solar Grade Silicon," Electrochim. Acta, 53, 106-110(2007). crossref(new window)

Jeong, S. M., Jung, J. Y., Seo, C. S. and Park, S. W., "Characteristics of An Electrochemical Reduction of $Ta_2O_5$ for the Preparation of Metallic Tantalum in a $LiCl-Li_2O$ Molten Salt," J. Alloy Compd., 440, 210-215(2007). crossref(new window)

Wang, S. I., Haarberg, G. M. and Kvalheim, E., "Electrochemical Behavior of Dissolved $Fe_2O_3$ in Molten $CaCl_2-KF$," J. Iron Steel Res., 16, 48-51(2008).

Gibilaro, M., Pivato, J., Cassayre, L., Massot, L., Chamelot, L. P. and Taxil, P., "Direct Electroreduction of Oxides in Molten Fluoride Salts," Electrochim. Acta., 56, 5410-5415(2011). crossref(new window)

Wang, D., Qiu, G., Jin, X., Hu, X. and Chen, G. Z., "Electrochemical Metallization of Solid Terbium Oxide," Angew. Chem. Int. Ed., 45, 2384-2388(2006). crossref(new window)

Yan, X. Y. and Fray, D. J., "Production of Niobium Powder by Direct Electrochemical Reduction of Solid $Nb_2O_5$ in a Eutectic $CaCl_2$-NaCl Melt," Metall. Mater. Trans. B., 33, 685-693(2002). crossref(new window)

Xu, Q., Deng, L.-Q., Wu, Y. and Ma, T., "A Study of Cathode Improvement for Electro-deoxidation of $Nb_2O_5$ in a Eutectic $CaCl_2$-NaCl Melt at 1073K," J. Alloy Compd., 396, 288-294(2005). crossref(new window)

Jeong, S. M., Yoo, H. Y., Hur, J.-M. and Seo, C.-S., "Preparation of Metallic Niobium from Niobium Pentoxide by An Indirect Electrochemical Reduction in a LiCl-$Li_2O$ Molten Salt," J. Alloy Compd., 452, 27-31(2008). crossref(new window)

Chen, G. Z., Gordo, E. and Fray, D. J., "Direct Electrolytic Preparation of Chromium Powder," Metall. Mater. Trans. B., 35, 223-233(2004). crossref(new window)

Gordo, E., Chen, G. Z. and Fray, D. J., "Toward Optimisation of Electrolytic Reduction of Solid Chromium Oxide to Chromium Powder in Molten Chloride Salts," Electrochim. Acta., 49, 2195-2208(2004). crossref(new window)

Claux, B., Serp, J. and Fouletier, J., "Electrochemical Reduction of Cerium Oxide Into Metal," Electrochim. Acta., 56, 2771-2780 (2011). crossref(new window)

Abdelkader, A. M., Tripuraneni Kilby, K., Cox, A. and Fray, D. J., "DC Voltammetry of Electro-deoxidation of Solid Oxides," Chem. Rev., 113, 2863-2886(2013). crossref(new window)

Wang, D., Jina, X. and Chen, G. Z., "Solid State Reactions: An Electrochemical Approach in Molten Salts," Annu. Rep. Prog. Chem. Sect. C, 104, 189-234(2008). crossref(new window)

Hur, J.-M., Seo, C. S., Hong, S. S., Kang, D. S. and Park, S. W., "Metallization of $U_3O_8$ Via Catalytic Electrochemical Reduction with $Li_2O$ in LiCl Molten Salt," React. Kinet. Catal. Lett., 80, 217(2003). crossref(new window)

Jeong, S. M., Park, S.-B., Hong, S.-S., Seo, C.-S. and Park, S.-W., "Electrolytic Production of Metallic Uranium from $U_3O_8$ in a 20 kgbatch Scale Reactor," J. Radioanal. Nucl. Chem., 268, 349-356 (2006). crossref(new window)

Park, S. B., Park, B. H., Jeong, S. M., Hur, J. M., Seo, C.-S., Choi, S.-H. and Park, S. W., "Characteristics of An Integrated Cathode Assembly for the Electrolytic Reduction of Uranium Oxide in a LiCl-$Li_2O$ Molten Salt," J. Radioanal. Nucl. Chem., 268, 489-495(2006). crossref(new window)

Hur, J.-M., Kim, T.-J., Choi, I.-K., Do, J. B., Hong, S.-S. and Seo, C.-S., "Chemical Behavior of Fission Products in the Petrochemical Process," Nucl. Technol., 162, 192-198(2008).

Sakamura, Y., Kurata, M. and Inoue, T., "Electrochemical Reduction of $UO_2$ in Molten $CaCl_2$ or LiCl," J. Electrochem. Soc., 153, D31-D39(2006). crossref(new window)

Sakamura, Y., Omori, T. and Inoue, T., "Application of Electrochemical Reduction to Produce Metal Fuel Material From Actinide Oxides," Nucl. Technol., 162, 169-178(2008).

Herrmann, S. D., Li, S. X., Simpson, M. F. and Phongikarroon, S., "Electrolytic Reduction of Spent Nuclear Oxide Fuel as Part of an Integral Process to Separate and Recover Actinides from Fission Product," Sep. Sci. Technol., 41, 1965-1983(2006). crossref(new window)

Herrmann, S. D., Li, S. X. and Simpson, M. F., "Electrolytic Reduction of Spent Light Water Reactor Fuel: Bench-scale Experiment Results," J. Nucl. Sci. Technol., 44, 361-367(2007). crossref(new window)

Herrmann, S. D. and Li, S. X., "Separation and Recovery of Uranium Metal From Spent Light Water Reactor Fuel Via Electrolytic Reduction and Electrorefining," Nucl. Tech., 171, 247-265(2010).

Choi, E.-Y., Lee, J. W., Park, J. J., Hur, J.-M., Kim, J.-K., Jung, K. Y. and Jeong, S. M., "Electrochemical Reduction Behavior of a Highly Porous SIMFUEL Particle in a LiCl Molten Salt," Chem. Eng. J., 207-208, 514-520(2012). crossref(new window)

Choi, E.-Y., Kim, J.-K., Im, H.-S., Choi, I.-K., Na, S.-H., Lee, J. W., Jeong, S. M. and Hur, J.-M., "Effect of the $UO_2$ form on the Electrochemical Reduction Rate in a LiCl-$Li_2O$ Molten Salt," J. Nucl. Mater., 437, 178-187(2013). crossref(new window)

Choi, E.-Y., Won, C. Y., Cha, J.-S., Park, W., Im, H.-S., Hong, S. S. and Hur, J.-M., "Electrochemical Reduction of $UO_2$ in LiCl-$Li_2O$ Molten Salt Using Porous and Nonporous Anode Shrouds," J. Nucl. Mater., 444, 261-269(2014). crossref(new window)

Choi, E.-Y., Hur, J.-M., Choi, I.-K., Kwon, S. G., Kang, D.-S., Hong, S. S., Shin, H.-S., Yoo, M. A. and Jeong, S. M., "Electrochemical Reduciton of Porous 17 kg Uranium Oxide Pellets by Selection of an Optimal Cathode/anode Surface Area Ratio," J. Nucl. Mater., 418, 87-92(2011). crossref(new window)