Advanced SearchSearch Tips
Effects of Fermentation Parameters on Cellulolytic Enzyme Production under Solid Substrate Fermentation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Korean Chemical Engineering Research
  • Volume 52, Issue 3,  2014, pp.302-306
  • Publisher : The Korean Institute of Chemical Engineers
  • DOI : 10.9713/kcer.2014.52.3.302
 Title & Authors
Effects of Fermentation Parameters on Cellulolytic Enzyme Production under Solid Substrate Fermentation
Kim, Jin-Woo;
  PDF(new window)
The present study was carried out to optimize fermentation parameters for the production of cellulolytic enzymes through solid substrate fermentation of Trichoderma reesei and Aspergillus niger grown on wheat straw. A sequential optimization based on one-factor-at-a-time method was applied to optimize fermentation parameters including temperature, pH, moisture content and particle size. The results of optimization indicated that , pH 7, moisture content 75% and particle size between 0.25~0.5 mm were found to be the optimum condition at 96 hr fermentation. Under the optimal condition, co-culture of T. reesei and A. niger produced cellulase activities of 10.3 IU, endoglucanase activity of 100.3 IU, -glucosidase activity of 22.9 IU and xylanase activity of 2261.7 IU/g dry material were obtained. Cellulolytic enzyme production with optimization showed about 72.6, 48.8, 55.2 and 51.9% increase compared to those obtained from control experiment, respectively.
Solid State Fermentation;Co-culture;Cellullolytic Enzyme;Optimization;Biorefinery;
 Cited by
Paenibacillus jamilae BRC15-1의 Cellulase 생산 최적화,차영록;윤영미;윤하얀;김중곤;양지영;나한별;안종웅;문윤호;최인후;유경단;이지은;안기홍;이경보;

KSBB Journal, 2015. vol.30. 6, pp.283-290 crossref(new window)
Limayema, A. and Rickea, S. C., "Lignocellulosic Biomass for Bioethanol Production: Current Perspectives, Potential Issues and Future Prospects," Prog. Energ. Combust, 38(4), 449-467(2012). crossref(new window)

Sarkar, N., Ghosh, S. K., Bannerjee, S. and Aikat, K., "Bioethanol Production from Agricultural Wastes: An Overview," Renew. Energ., 37(1), 19-27(2012). crossref(new window)

Dhillon, G. S., Brar, S. K., Kaur, S. and Verma. M., "Bioproduction and Extraction Optimization of Citric Acid from Aspergillus niger by Rotating Drum Type Solid-state Bioreactor," Ind. Crop Prod., 41, 78-84(2013). crossref(new window)

Kim, S. B., Lee, J. H., Oh, K. K., Lee, S. J., Lee, J. Y., Kim, J. S. and Kim, S. W., "Dilute Acid Pretreatment of Barley Straw and Its Saccharification and Fermentation," Biotechnol. Bioproc. Eng., 16(4), 725-732(2011). crossref(new window)

Go, A. R., Ko, J. W., Lee, S. J., Kim, S. W., Han, S. O., Lee, J. W., Woo, H. M., Um, Y. S., Nam, J. W. and Park, C. H. "Process Design and Evaluation of Value-added Chemicals Production from Biomass," Biotechnol. Bioproc. Eng., 17(5), 1055-1061(2012). crossref(new window)

Kim, T. H., Kim, J. S., Sunwoo, C. S. and Lee, Y. Y., "Pretreatment of Corn Stover by Aqueous Ammonia," Bioresour. Technol., 90(1), 39-47(2003). crossref(new window)

Kim, K. S. and Kim, J. S., "Optimization of Ammonia Percolation Process for Ethanol Production from Miscanthus Sinensis," Korean Chem. Eng. Res., 48(6), 704-711(2010).

Singhania, R. R., Shkumaran, R. K., Patel, A. K., Larroche, C. and Pandey, A., "Advancement and Comparative Profiles in the Production Technologies Using Solid-state and Submerged Fermentation for Microbial Cellulases," Enzyme Microb. Technol., 46(7), 541-549(2010). crossref(new window)

Dhillon, G. S., Bra, S. K. and Surinder, K., "Potential of Apple Pomace as a Solid Substrate for Fungal Cellulase and Hemicellulase Bioproduction Through Solid-state Fermentation," Ind. Crop Prod., 38, 6-13(2012). crossref(new window)

Barrington, S. and Kim, J. W., "Response Surface Optimization of Medium Components for Citric Acid Production by Aspergillus niger NRRL 567 Grown in Peat Moss," Bioresour. Technol., 99(2), 368-377(2008). crossref(new window)

Kim, J. W. and Barrington, S., "Response Surface Optimization of Medium Components for Citric Acid Production by Aspergillus niger NRRL 567 Grown in Peat Moss," Bioresour. Technol., 99(2), 368-377(2008). crossref(new window)

Pensupa, N., Jin, M., Kokolski, M., Archer, D. B. and Du, C. A., "A Solid State Fungal Fermentation-based Strategy for the Hydrolysis of Wheat Straw," Bioresour. Technol., 149, 261-267(2013). crossref(new window)

Kim, J. W., Barrington, S., Sheppard, J. and Lee, B., "Nutrient Optimization for the Production of Citric Acid by Aspergillus niger NRRL 567 Grown on Peat Moss Enriched with Glucose," Process Biochem., 41(6), 1253-1260(2006). crossref(new window)

Rezaei, P., Darzi, G. and Shafaghat, H., "Optimization of the Fermentation Conditions and Partial Characterization for Acidothermophilic ${\alpha}$-amylase from Aspergillus niger NCIM 548," Korean J. Chem. Eng., 27(3), 919-924(2010). crossref(new window)

NREL. Chemical analysis testing standard procedure nos. 001-004 and 009. 1996; National Renewable Energy Laboratory, Golden, CO.

Rahikainen, J., Mikander, S., Marjama, K., Tamminen, T., Lappas, A., Viikari, L. and Kruus, K., "Inhibition of Enzymatic Hydrolysis by Residual Lignins from Softwood-study of Enzyme Binding and Inactivation on Lignin-rich Surface," Biotechnol. Bioeng., 108(12), 2823-2834(2011). crossref(new window)

Takashima, S., Iilura, H., Nakamur, A., Hidak, M., Masaki, H. and Uozumi, T., "Overproduction of Recombinant Trichoderma reesei Cellulase by Aspergilus oryzae and Their Enzymatic Properties," J. Biotechnol., 65(2), 163-171(1998). crossref(new window)

Jianlong, W. and Ping, L., "Phytate as a Stimulator of Citric Acid Production by Aspergillus niger," Process Biochem., 33(3), 313-316(1998). crossref(new window)

Lotfy, W. A., Ghanem, K. M. and El-Helow, E. R., "Citric Acid Production by a Novel Aspergillus niger isolate: I. Mutagenesis and Cost Reduction Studies," Bioresour. Technol., 98(18), 3464-3469(2007). crossref(new window)

Bansal, N., Tewari, R., Soni, R. and Soni, S. K., "Production of Cellulases from Aspergilluns niger NS-2 in Solid State Fermentation on Agricultural and Kitchen Waste Residues," Waste Manag., 32, 1341-1346(2012). crossref(new window)

Kim, J. W., "Response Surface Optimization of Fermentation Parameters for Citric Acid Production in Solid Substrate Fermentation," Korean Chem. Eng. Res., 50(5), 879-884(2012). crossref(new window)

Roukas, T., "Citric Acid Production from Carob Pod by Solidstate Fermentation," Enzyme Microb. Technol., 24(1), 54-59(1999). crossref(new window)

Nampoothiri, M. K., Baiju, T. V., Sandhya, C., Sabu, A., Szakacs, G. and Pandey, A., "Process Optimization for Antifungal Chitinase Production by Trichoderma harzianum," Process Biochem., 39(11), 1583-1590(2004). crossref(new window)

Wen, Z. Y. and Chen, F., "Application of Statistically-based Experimental Designs for the Optimization of Eicosapentaenoic Acid Production by the Diatom Nitzschia laevis," Biotechnol. Bioeng., 75(2), 159-169(2001). crossref(new window)

Ellaiah, P., Srinivasulu, B. and Adinarayana, K., "Optimization Studies on Neomycin Production by a Mutant Strain of Streptomyces marinensis in Solid State Fermentation," Process Biochem., 39(5), 529-534(2004). crossref(new window)