JOURNAL BROWSE
Search
Advanced SearchSearch Tips
In situ Gelation of Monodisperse Alginate Hydrogel in Microfluidic Channel Based on Mass Transfer of Calcium Ions
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Korean Chemical Engineering Research
  • Volume 52, Issue 5,  2014, pp.632-637
  • Publisher : The Korean Institute of Chemical Engineers
  • DOI : 10.9713/kcer.2014.52.5.632
 Title & Authors
In situ Gelation of Monodisperse Alginate Hydrogel in Microfluidic Channel Based on Mass Transfer of Calcium Ions
Song, YoungShin; Lee, Chang-Soo;
  PDF(new window)
 Abstract
A microfluidic method for the in situ production of monodispersed alginate hydrogels using biocompatible polymer gelation by crosslinker mass transfer is described. Gelation of the hydrogel was achieved in situ by the dispersed calcium ion in the microfluidic device. The capillary number (Ca) and the flow rate of the disperse phase which are important operating parameters mainly influenced the formation of three distinctive flow regions, such as dripping, jetting, and unstable dripping. Under the formation of dripping region, monodispersed alginate hydrogels having a narrow size distribution (C.V=2.71%) were produced in the microfluidic device and the size of the hydrogels, ranging from 30 to , could be easily controlled by varying the flow rate, viscosity, and interfacial tension. This simple microfluidic method for the production of monodisperse alginate hydrogels shows strong potential for use in delivery systems of foods, cosmetics, inks, and drugs, and spherical alginate hydrogels which have biocompatibility will be applied to cell transplantation.
 Keywords
Hydrogel;Alginate;Monodispersity;Microfluidic;Mass Transfer;
 Language
Korean
 Cited by
1.
은 나노입자 전극과 패러데이 모트를 이용한 미세유체 피코리터 주입기의 전압효율 상승,노영무;진시형;정성근;김남영;노창현;이창수;

Korean Chemical Engineering Research, 2015. vol.53. 4, pp.472-477 crossref(new window)
2.
미세유체 장치에서 수거 방법에 따른 펙틴 하이드로겔 입자의 특성 비교,김채연;박기수;강성민;김종민;송영신;이창수;

Korean Chemical Engineering Research, 2015. vol.53. 6, pp.740-745 crossref(new window)
3.
순차적 마이크로 몰딩 방법을 이용한 이방성 패치 입자 제조 기술,이병진;최창형;김종민;강성민;남진오;진시형;이창수;

폴리머, 2015. vol.39. 5, pp.814-819 crossref(new window)
1.
Increase in Voltage Efficiency of Picoinjection using Microfluidic Picoinjector Combined Faraday Moat with Silver Nanoparticles Electrode, Korean Chemical Engineering Research, 2015, 53, 4, 472  crossref(new windwow)
 References
1.
Desai, A., Kisaalita, W. S., Keith, C. and Wu, Z. Z., "Human Neuroblastoma (SH-SY5Y) Cell Culture and Differentiation in 3-D Collagen Hydrogels for Cell-based Biosensing," Biosens Bioelectron, 21(8), 1483-1492(2006). crossref(new window)

2.
Norton, L. W., Tegnell, E., Toporek, S. S. and Reichert, W. M., "In vitro Characterization of Vascular Endothelial Growth Factor and Dexamethasone Releasing Hydrogels for Implantable Probe Coatings," Biomaterials, 26(16), 3285-3297(2005). crossref(new window)

3.
Frykman, S. and Srienc, F., "Quantitating Secretion Rates of Individual Cells: Design of Secretion Assays," Biotechnol Bioeng., 59(2), 214-226(1998). crossref(new window)

4.
Xu, B., Iwata, H., Miyamoto, M., Balamurugan, A. N., Murakami, Y., Cui, W., Imamura, M. and Inoue, K., "Functional Comparison of the Single-layer Agarose Microbeads and the Developed Three-layer Agarose Microbeads as the Bioartificial Pancreas: an in vitro Study," Cell Transplant, 10(4-5), 403-408(2001).

5.
Dove, A., "Cell-based Therapies Go Live," Nat Biotechnol., 20(4), 339-343(2002). crossref(new window)

6.
Borisov, S. M. and Wolfbeis, O. S., "Temperature-sensitive Europium(III) Probes and Their Use for Simultaneous Luminescent Sensing of Temperature and Oxygen," Anal Chem., 78(14), 5094-5101(2006). crossref(new window)

7.
Goponenko, A. V. and Asher, S. A., "Modeling of Stimulated Hydrogel Volume Changes in Photonic Crystal $Pb^{2+}$ Sensing Materials," J Am Chem Soc., 127(30), 10753-10759(2005). crossref(new window)

8.
Ben-Moshe, M., Alexeev, V. L. and Asher, S. A., "Fast Responsive Crystalline Colloidal Array Photonic Crystal Glucose Sensors," Anal Chem., 78(14), 5149-5157(2006). crossref(new window)

9.
Tan, Y. C., Hettiarachchi, K., Siu, M., Pan, Y. R. and Lee, A. P., "Controlled Microfluidic Encapsulation of Cells, Proteins, and Microbeads in Lipid Vesicles," J Am Chem Soc., 128(17), 5656-5658(2006). crossref(new window)

10.
Choi, C. H., Jung, J. H., Rhee, Y. W., Kim, D. P., Shim, S. E. and Lee, C. S., "Generation of Monodisperse Alginate Microbeads and in situ Encapsulation of Cell in Microfluidic Device," Biomed Microdevices, 9(6), 855-862(2007). crossref(new window)

11.
Silva, C. M., Ribeiro, A. J., Figueiredo, I. V., Goncalves, A. R. and Veiga, F., "Alginate Microspheres Prepared by Internal Gelation: Development and Effect on Insulin Stability," Int J Pharm, 311(1-2), 1-10(2006). crossref(new window)

12.
Sugiura, S., Oda, T., Aoyagi, Y., Matsuo, R., Enomoto, T., Matsumoto, K., Nakamura, T., Satake, M., Ochiai, A., Ohkohchi, N. and Nakajima, M., "Microfabricated Airflow Nozzle for Microencapsulation of Living Cells into 150 Micrometer Microcapsules," Biomed Microdevices, 9(1), 91-99(2007). crossref(new window)

13.
Sugiura, S., Oda, T., Izumida, Y., Aoyagi, Y., Satake, M., Ochiai, A., Ohkohchi, N. and Nakajima, M., "Size Control of Calcium Alginate Beads Containing Living Cells Using Micro-nozzle Array," Biomaterials, 26(16), 3327-3331(2005). crossref(new window)

14.
Halle, J. P., Leblond, F. A., Pariseau, J. F., Jutras, P., Brabant, M. J. and Lepage, Y., "Studies on Small (< 300 microns) Microcapsules: II-Parameters Governing the Production of Alginate Beads by High Voltage Electrostatic Pulses," Cell Transplant, 3(5), 365-372(1994).

15.
Whitesides, G. M., "The Origins and the Future of Microfluidics," Nature, 442(7101), 368-373(2006). crossref(new window)

16.
Huh, Y. S., Jeon, S. J., Lee, E. Z., Park, H. S. and Hong, W. H., "Microfluidic Extraction Using Two Phase Laminar Flow for Chemical and Biological Applications," Korean J. Chem. Eng., 28(3), 633-642(2011). crossref(new window)

17.
Min, S. K., Lee, B. M., Hwang, J. H., Ha, S. H. and Shin, H. S., "Mathematical Analysis of Colonial Formation of Embryonic Stem Cells in Microfluidic System," Korean J. Chem. Eng., 29(3), 392-395(2012). crossref(new window)

18.
Jeong, H. H., Lee, S. H. and Lee, C. S., "Pump-less Static Microfluidic Device for Analysis of Chemotaxis of Pseudomonas Aeruginosa Using Wetting and Capillary Action," Biosens. Bioelectron., 47, 278-284(2013). crossref(new window)

19.
Jung, J. H. and Lee, C. S., "Droplet Based Microfluidic System," Korean Chem. Eng. Res., 48(5), 545-555(2010).

20.
Nie, Z. H., Xu, S. Q., Seo, M., Lewis, P. C. and Kumacheva, E., "Polymer Particles with Various Shapes and Morphologies Produced in Continuous Microfluidic Reactors," J. Am. Chem. Soc., 127(22), 8058-8063(2005). crossref(new window)

21.
Zourob, M., Mohr, S., Mayes, A. G., Macaskill, A., Perez-Moral, N., Fielden, P. R. and Goddard, N. J., "A Micro-reactor for Preparing Uniform Molecularly Imprinted Polymer Beads," Lab on a Chip., 6(2), 296-301(2006). crossref(new window)

22.
Tan, W. H. and Takeuchi, S., "Monodisperse Alginate Hydrogel Microbeads for Cell Encapsulation," Adv. Mater., 19(18), 2696(2007). crossref(new window)

23.
Huang, K. S., Lai, T. H. and Lin, Y. C., "Manipulating the Generation of Ca-alginate Microspheres Using Microfluidic Channels As a Carrier of Gold Nanoparticles," Lab on a Chip., 6(7), 954-957(2006). crossref(new window)

24.
Agarwal, P., Zhao, S. T., Bielecki, P., Rao, W., Choi, J. K., Zhao, Y., Yu, J. H., Zhang, W. J. and He, X. M., "One-step Microfluidic Generation of Pre-hatching Embryo-like Core-shell Microcapsules for Miniaturized 3D Culture of Pluripotent Stem Cells," Lab on a Chip, 13(23), 4525-4533(2013). crossref(new window)

25.
Zhang, H., Tumarkin, E., Peerani, R., Nie, Z., Sullan, R. M. A., Walker, G. C. and Kumacheva, E., "Microfluidic Production of Biopolymer Microcapsules with Controlled Morphology," J. Am. Chem. Soc., 128(37), 12205-12210(2006). crossref(new window)

26.
Dreyfus, R., Tabeling, P. and Willaime, H., "Ordered and Disordered Patterns in Two-phase Flows in Microchannels," Phys. Rev. Lett., 90(14), (2003).

27.
Xu, J. H., Luo, G. S., Li, S. W. and Chen, G. G., "Shear Force Induced Monodisperse Droplet Formation in a Microfluidic Device by Controlling Wetting Properties," Lab on a Chip, 6(1), 131-136(2006). crossref(new window)

28.
Choi, C. H., Jung, J. H. and Lee, C. S., "in situ Microfluidic Method for the Generation of Uniform PEG Microfiber," Korean Chem. Eng. Res., 48(4), 470-474(2010).

29.
Nie, Z. H., Seo, M. S., Xu, S. Q., Lewis, P. C., Mok, M., Kumacheva, E., Whitesides, G. M., Garstecki, P. and Stone, H. A., "Emulsification in a Microfluidic Flow-focusing Device: Effect of the Viscosities of the Liquids," Microfluidics and Nanofluidics, 5(5), 585-594(2008). crossref(new window)

30.
Yobas, L., Martens, S., Ong, W. L. and Ranganathan, N., "Highperformance Flow-focusing Geometry for Spontaneous Generation of Monodispersed Droplets," Lab Chip, 6(8), 1073-9(2006). crossref(new window)

31.
Zhou, C., Yue, P. and Feng, J. J., "Formation of Simple and Compound Drops in Microfluidic Devices," Physics of Fluids, 18(092105), 1-14(2006).

32.
Peng, L., Yang, M., Guo, S. S., Liu, W. and Zhao, X. Z., "The Effect of Interfacial Tension on Droplet Formation in Flow-focusing Microfluidic Device," Biomed Microdevices, 13(3), 559-64(2011). crossref(new window)