JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Modeling of Multicomponent Mixture Separation Processes Using Hollowfiber Membrane
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Modeling of Multicomponent Mixture Separation Processes Using Hollowfiber Membrane
Kim, Sin-Ah; Kim, Jin-Kuk; Lee, Young Moo; Yeo, Yeong-Koo;
  PDF(new window)
 Abstract
So far, most of research activities on modeling of membrane separation processes have been focused on binary feed mixture. But, in actual separation operations, binary feed is hard to find and most separation processes involve multicomponent feed mixture. In this work models for membrane separation processes treating multicomponent feed mixture are developed. Various model types are investigated and validity of proposed models are analysed based on experimental data obtained using hollowfiber membranes. The proposed separation models show quick convergence and exhibit good tracking performance.
 Keywords
Hollowfiber Membrane;Multicomponent Mixture;Permeability;Separation Model;
 Language
Korean
 Cited by
 References
1.
Weller, S., Steiner and W. A., "Separation of Gases by Fractional Permeation through Membranes," J. Appl. Phys, 21, 279(1950). crossref(new window)

2.
Weller, S., Steiner and W. A., "Engineering Aspects of Separation of Gases," Chem. Eng. Prog, 46, 585(1950).

3.
Blaisdell, C. T. and Kammermeyer, K., "Counter-current and Cocurrent Gas Separation," Chem. Eng. Sci, 28, 1249-1255(1973). crossref(new window)

4.
Stern, S. A. and Wang, S. C., "Counter-current and Co-current Gas Separation in a Permeate Stage. Comparison of Computation Methods," J. Membr. Sci., 4, 141-148(1978). crossref(new window)

5.
Rautenbach, R. and Dahm, W., "Simplified Calculation of Gas-Permeation Hollow-Fiber Modules for the Separation of Binary Mixtures," J. Membr. Sci., 28, 319-327(1986). crossref(new window)

6.
Krovvidi, K. R., Kovvali, A. S., Vemury, S. and Khan, A. A., "Approximate Solutions for Gas Permeators Separating Binary Mixtures," J. Membr. Sci., 66, 103-118(1992). crossref(new window)

7.
Shindo, Y., Hakuta, T. and Yoshitome, H., "Calculation Methods for Multicomponent Gas Separation by Permeation, " Sep. Sci. Technol., 20(5&6), 445-459(1985). crossref(new window)

8.
Shindo, Y., Itoh, N. and Haraya, K., "A Theoretical Analysis of Multicomponent Gas Separation by Means of a Membrane with Perfect Mixing," Sep. Sci. Technol., 24(7&8), 599-616(1989). crossref(new window)

9.
Li, K., Acharya, D. R. and Hughes, R., "Mathematical Modelling of Multicomponent Membrane Permeators," J. Membr. Sci., 52, 205-219(1990). crossref(new window)

10.
McCandless, F. P., "Iterative Solution of Multicomponent Permeator Model Equations," J. Membr. Sci., 48, 115-122(1990). crossref(new window)

11.
Kovvali, A. S., Vemury, S., Krovvidi, K. R. and Khan, A. A., "Models and Analyses of Membrane Gas Permeators," J. Membr. Sci., 73, 1-23(1992). crossref(new window)

12.
Kovvali, A. S., Vemury, S. and Admassu, W., "Modeling of Multicomponent Countercurrent Gas Permeators," Ind. Eng. Chem. Res., 33, 896-903(1994). crossref(new window)

13.
Chen, H., Jiang, G. and Xu, R., "An approximate Solution for Countercurrent Gas Permeation Separating Multicomponent Mixtures," J. Membr. Sci., 95, 11-19(1994). crossref(new window)

14.
Davis, R. A., "Solution Method for Countercurrent Plug Flow Models of Multicomponent Gas Separation by Permeation," Sep. Sci. Technol., 40, 3017-3031(2005). crossref(new window)

15.
Coker, D. T. and Freeman, B. D., "Modeling Multicomponent Gas Separation Using Hollow-Fiber Membrane Contactors," AIChE J., 44, No.6(1998).

16.
Katoh, T., Tokumura, M., Yoshikawa, H. and Kawase, Y., "Dynamic Simulation of Multicomponent Gas Separation by Hollow-Fiber Membrane Module: Nonideal Mixing Flows in Permeate and Residue sides Using the Tanks-in-Series Model," Sep. Purif. Technol., 76, 362-372(2011). crossref(new window)

17.
Qi, R. and Henson, M. A., "Membrane System Design for Multicomponent Gas Mixtures via Mixed-Interer Nonlinear Programming," Comput. Chem. Eng., 24, 2719-2737(2000). crossref(new window)

18.
Kaldis, S. P., Kapantaidakis, G. C. and Sakellaropoulos, G. P., "Simulation of multicomponent Gas Separation in a Hollow Fiber Membrane by Orthogonal Collocation- Hydrogen Recovery From Refinery Gases," J. Membr. Sci., 173, 61-71(2000). crossref(new window)

19.
Khalilpour, R., Abbas, A., Lai, Z. and Pinnau, I., "Modeling and Parametric Analysis of Hollow Fiber Membrane System for Carbon Capture from Multicomponent Flue Gas, " AIChE J., 58, No.5(2012).

20.
Hussain, A. and Hogg, M. B., "A Feasibility Study of $CO_2$ Capture from Flue Gas by a Facilitated Transport Membrane," J. Membr. Sci., 359, 140-148(2010). crossref(new window)

21.
Choi, J. H., Youn, P. S., Kim, K. C., Yi, C. K., Jo, S. H., Ryu, H. J. and Park, Y. C., "A Model on a Bubbling Fluidized Bed Process for $CO_2$ Capture from Flue Gas," Korean Chem. Eng. Res., 50(3), 516-521(2012). crossref(new window)

22.
Park, H. B., Jung, C. H., Lee, Y. M., Hill, A. J., Pas, S. J. et al., "Polymers with Cavities Tuned for Fast Selective Transport of Small Molecules and Ions," Science, 318, 254-258(2007). crossref(new window)

23.
Jung, H. J., Han, S. H., Lee, Y. M. and Yeo, Y. K., "Modeling and Simulation of Hollow Fiber $CO_2$ Separation Modules," Korean J. Chem. Eng., 28(7), 1497-1504(2011). crossref(new window)