JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Preparation of La0.5Nd0.5Ni5 Alloy by an Electrochemical Reduction in Molten LiCl
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Korean Chemical Engineering Research
  • Volume 53, Issue 2,  2015, pp.145-149
  • Publisher : The Korean Institute of Chemical Engineers
  • DOI : 10.9713/kcer.2015.53.2.145
 Title & Authors
Preparation of La0.5Nd0.5Ni5 Alloy by an Electrochemical Reduction in Molten LiCl
Lim, Jong Gil; Jeong, Sang Mun;
  PDF(new window)
 Abstract
The electrochemical behavior of mixed oxide including rare earth resources has been studied to synthesize alloy in a LiCl molten salt. The mixed oxide was converted to (spinel) and (perovskite) structures at a sintering temperature of . The spinel and perovskite structures led a speed-up in the electrolytic reduction of the mixed oxide. Various reaction intermediates such as Ni, were observed during the electrochemical reduction by XRD analysis. A possible reaction route to in the LiCl molten salt was proposed based on the analysis result.
 Keywords
Electrochemical Reduction;LiCl;Molten Salt;;Rare Earth Resources Metal;
 Language
Korean
 Cited by
 References
1.
Schlapbach, L. and Zuttel, A., "Hydrogen-storage Materials for Mobile Applications," Nature., 414(6861), 353-358(2001). crossref(new window)

2.
Tliha, M., Mathlouthi, H., Lamloumi, J. and Percheron-Guegan, A., "Electrochemical Kinetic Parameters of a Metal Hydride Battery Electrode," Int. J. Hydrog. Energy, 32(5), 611-614(2007). crossref(new window)

3.
Zhao, B., Wang, L., Dai, L., Cui, G., Zhou, H. and Kumar R., "Direct Electrolytic Preparation of Cerium/nickel Hydrogen Storage Alloy Powder in Molten Salt," J. Alloys Compd., 468(1), 379-385(2009). crossref(new window)

4.
Drasner, A. and Blazina, Z., "The Effect of Substitution of ga for ni on the Hydrogen Sorption Properties of $NdNi_5$," J. Alloys Compd., 381(1), 188-191(2004). crossref(new window)

5.
Zhu, Y., Wang, D., Ma, M., Hu, X., Jin, X. and Chen, G. Z., "More Affordable Electrolytic $LaNi_5$-type Hydrogen Storage Powders," Chem. Commun., 2515-2517(2007).

6.
Yoon, H. S., Kim, C. J., Chung, K. W., Lee, S. J., Joe, A. R., Shin, Y. H., Lee, S. I., Yoo, S. J. and Kim, J. G., "Leaching Kinetics of Neodymium in Sulfuric Acid from E-scrap of NdFeB Permanent Magnet," Korean J. Chem. Eng., 31(4), 706-711(2014). crossref(new window)

7.
Nam, S. U. and Paik, Y. H., "A Study on the Production of Nd- Fe Mother Alloy from $Nd_2O_3$ by the Molten Salt Electrolysis," J. Korean Inst. Met. Mater., 31(9), 1156-1161(1993).

8.
Choi, E. Y., Hur, J. M., Choi, I. S., Kwon, S. G., Kang, D. S., Hong, S. S., Shin, H. S., Yoo, M. A. and Jeong, S. M., "Electrochemical Reduction of Porous 17 kg Uranium Oxide Pellets by Selection of an Optimal Cathode/anode Surface Area Ratio," J. Nucl. Mater., 418(1), 87-92(2011). crossref(new window)

9.
Choi, E. Y., Hong, S. S. Park, . Im, H. S., Oh, S. C., Won, C. Y., Cha, J. S. and Hur, J. M., "Electrochemical Reduction Process for Pyroprocessing," Korean Chem. Eng. Res., 52(3), 279-288(2014). crossref(new window)

10.
Ryu, H. Y., Jeong, S. M. and J. G. Kim, "Electrochemical Behavior of $Mg^{2+}$ ions in $MgCl_2-CaCl_2-NaCl$ Molten Salt," Korean Chem. Eng. Res., 50(6) 939-944(2012).

11.
Chen, G. Z., Fray, D. J. and Farthing, T. W., "Direct Electrochemical Reduction of Titanium Dioxide to Titanium in Molten Calcium Chloride," Nature, 407(6802), 361-364(2000). crossref(new window)

12.
Ma, M., Wang, D., Wang, W., Hu, X., Jin, X. and Chen, G. Z., "Extraction of Titanium From Different Titania Precursors by the FFC Cambridge Process," J. Alloys Compd., 420(1), 37-45 (2006). crossref(new window)

13.
Chen, G. and Fray, D., "Understanding the Electro-reduction of Metal Oxides in Molten Salts," Light Metals 881-886(2004).

14.
Qiu, G., Feng, X., Liu, M., Tan, W. and Liu, F., "Investigation on Electrochemical Reduction Process of $Nb_2O_5$ Powder in Molten $CaCl_2$ with Metallic Cavity Electrode," Electrochim. Acta., 53(12), 4074-4081(2008). crossref(new window)

15.
Kim, P., Xie, H., Zhai, Y., Zou, X. and Lang, X., "Direct Electrochemical Reduction of $Dy_2O_3$ in $CaCl_2$ Melt," J. Appl. Electrochem., 42(4), 257-262(2012). crossref(new window)

16.
Ji, H. S., Ryu, H. Y., Jeong, S. M. and Cho, S. W, "Fast Electrochemical Synthesis of $NdNi_5$ Hydrogen Storage Alloy in Molten Salt," Chem. Lett., 42(10), 1182-1184(2013). crossref(new window)

17.
Abdelkader, A. M., Hyslop, D. J. S., Cox, A. and Fray, D. J., "Electrochemical Synthesis and Characterization of a $NdCo_5$ Permanent Magnet," J. Mater. Chem., 20, 6039-6049(2010). crossref(new window)

18.
Zhang, Y., Yin, H., Zhang, S., Tang, D., Yuan, Z., Yan, T., Zheng, W. and Wang, D., "Preparation of $CeNi_2$ Intermetallic Compound by Direct Electro Reduction of Solid $CeO_2$-2NiO in Molten LiCl," J. Rare Earths., 30(9), 923-927(2012). crossref(new window)

19.
Kim, D. S., Cho, P. S., Lee, J. H., Kim, D. Y. and Lee, S. B., "Improvement of Grain-boundary Conduction in Gadolinia-doped Ceria Via Post-sintering Heat Treatment," Solid State Ion., 177(19), 2125-2128(2006). crossref(new window)