JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Wet Air Oxidation Pretreatment of Mixed Lignocellulosic Biomass to Enhance Enzymatic Convertibility
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Korean Chemical Engineering Research
  • Volume 53, Issue 2,  2015, pp.216-223
  • Publisher : The Korean Institute of Chemical Engineers
  • DOI : 10.9713/kcer.2015.53.2.216
 Title & Authors
Wet Air Oxidation Pretreatment of Mixed Lignocellulosic Biomass to Enhance Enzymatic Convertibility
Sharma, A.; Ghosh, A.; Pandey, R.A.; Mudliar, S.N.;
  PDF(new window)
 Abstract
The present work explores the potential of wet air oxidation (WAO) for pretreatment of mixed lignocellulosic biomass to enhance enzymatic convertibility. Rice husk and wheat straw mixture (1:1 mass ratio) was used as a model mixed lignocellulosic biomass. Post-WAO treatment, cellulose recovery in the solid fraction was in the range of 86% to 99%, accompanied by a significant increase in enzymatic hydrolysis of cellulose present in the solid fraction. The highest enzymatic conversion efficiency, 63% (by weight), was achieved for the mixed biomass pretreated at , 5 bar, 10 minutes compared to only 19% in the untreated biomass. The pretreatment under the aforesaid condition also facilitated 52% lignin removal and 67% hemicellulose solubilization. A statistical design of experiments on WAO process conditions was conducted to understand the effect of process parameters on pretreatment, and the predicted responses were found to be in close agreement with the experimental data. Enzymatic hydrolysis experiments with WAO liquid fraction as diluent showed favorable results with sugar enhancement up to .
 Keywords
Wet Air Oxidation;Pretreatment;Enzymatic Hydrolysis;Recycled Liquid Fraction;Lignocellulosic Biomass;
 Language
English
 Cited by
1.
Production of high concentrated cellulosic ethanol by acetone/water oxidized pretreated beech wood, Biotechnology for Biofuels, 2017, 10, 1  crossref(new windwow)
2.
Investigation of different pretreatment methods of Mediterranean-type ecosystem agricultural residues: characterisation of pretreatment products, high-solids enzymatic hydrolysis and bioethanol production, Biofuels, 2017, 1759-7277, 1  crossref(new windwow)
 References
1.
Ravikumar, R., Ranganathan, B. V., Chathoth, K. N. and Gobikrishnan, S., Korean J. Chem. Eng., 30(5), 1051-1057(2013). crossref(new window)

2.
Balat, M., Balat, H. and Oz, C., Prog. Energy Combust. Sci., 34, 551-573(2008). crossref(new window)

3.
Gunatilake, H., H India: Study on Cross-Sectoral Implications of Biofuel Production and Use. Final Report of TA 7250-IND (2011)

4.
Bhojvaid, P. P. Biofuels: Towards a greener and secure energy future. TERI Press (2006).

5.
Licht, F. O., World Ethanol Market: The Outlook to 2015, Tunbridge Wells, Agra Europe Special Report, UK (2006).

6.
Sukumaran, R. K., Surender, V. J., Sindhu, R., Binod, P., Janu, K. U. and Sajna, K. V., Bioresour. Technol., 101, 4826-4833(2010). crossref(new window)

7.
Berlin, A., Balakshin, M., Gilkes, N., Kadla, J., Maximenko, V., Kubo, S. and Saddler, J., J. Biotechnol., 125, 198-209(2006). crossref(new window)

8.
Menon, V. and Rao, M., Prog. Energy. Combust. Sci., 38, 522-550 (2012). crossref(new window)

9.
Kumar, P., Barrett, D. M., Delwiche, M. J. and Stroeve, P., Ind. Eng. Chem. Res., 48(8), 3713-3729(2009). crossref(new window)

10.
Han, M., Kim, Y., Kim, Y., Chung, B. and Choi, G. W., Korean J. Chem. Eng., 28(1), 119-125(2011). crossref(new window)

11.
Bjerre, A. B., Oleson, A. B., Fernqvist, T., Ploger, A. and Schmidt, A. S., Biotechnol. Bioeng., 49, 568-577(1996). crossref(new window)

12.
Ravikumar, R., Ranganathan, B. V., Chathoth, K. N. and Gobikrishnan, S., Korean J. Chem. Eng., 30(5), 1051-1057(2013). crossref(new window)

13.
Schmidt, A. S. and Thomsen, A. B., Bioresour. Technol., 64, 139-151(1995).

14.
Mishra, V. S., Mahajani, V. V. and Joshi, J. B., Wet air oxidation. Ind. Eng. Chem. Res., 34, 2-48(1995). crossref(new window)

15.
Banerjee, S., Sen, R. and Pandey, R. A., Biomass Bioenerg., 33, 1680-1686(2009). crossref(new window)

16.
Ayeni, A. O., Banerjee, S., Omoleye, J. A. and Hymore, F. K., Biomass Bioenerg., 48, 130-138(2013). crossref(new window)

17.
Alvira, P., Tomas-Pejo, E., Ballesteros, M. and Negro, M. J., Bioresour. Technol., 101, 4851-4861(2010). crossref(new window)

18.
Simmons, T. J., Lee, S. H., Miao, J., Miyauchi, M., Park, T. J., Bale, S. S. and Linhardt, R. J., Wood Sci Technol., 45, 719-733 (2011). crossref(new window)

19.
Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Wooley, R. and Sluiter, J., Golden, CO: National Renewable Energy Laboratory, NREL/TP-510-42618(2008).

20.
Miller, G. L., Anal. Chem. 31, 426-428(1959). crossref(new window)

21.
Banerjee, S., Sen, R., Mudliar, S. N., Pandey, R. A., Chakrabarti, T. and Satpute, D., Biotechnol. Progr., 27, 691-697(2011). crossref(new window)

22.
Kwak, K. O., Jung, S. J., Chung, S. Y., Kang, C. M. Huh, Y. I. and Bae, S. O., Biochem. Eng J., 31, 1-7(2006). crossref(new window)

23.
Klinke, H. B., Ahring, B. K., Schmidt, A. S. and Thomsen, A. B., Bioresour. Technol., 82, 15-26(2002). crossref(new window)

24.
Palonen, H., Thomsen, A. B., Tenkanen, M., Schmidt, A. S. and Viikari, L., Appl. Biochem. Biotechnol., 117, 1-17 (2004). crossref(new window)

25.
Martin, C., Marcet, M. and Thomsen, A. B., Bioresources, 3, 670-683 (2008).

26.
Fayyaz-ur-Rehman, M., Tariq, M. I., Aslam, M., Khadija, G. and Iram, A., Open Enzym Inhib J., 2, 8-11(2009). crossref(new window)

27.
Kristensen, J. B., Felby, C. and Jorgensen, H., Appl. Biochem. Biotechnol., 156(1-3), 127-132(2009). crossref(new window)