Advanced SearchSearch Tips
Preparation of Azidated Polybutadiene(Az-PBD)/Ethylene-Vinyl Acetate Copolymer(EVA) Blends for the Application of Energetic Thermoplastic Elastomer
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Korean Chemical Engineering Research
  • Volume 53, Issue 3,  2015, pp.282-288
  • Publisher : The Korean Institute of Chemical Engineers
  • DOI : 10.9713/kcer.2015.53.3.282
 Title & Authors
Preparation of Azidated Polybutadiene(Az-PBD)/Ethylene-Vinyl Acetate Copolymer(EVA) Blends for the Application of Energetic Thermoplastic Elastomer
Yoon, Sang Won; Choi, Myung Chan; Chang, Young-Wook; Noh, Si-Tae; Kwon, Soon Kil;
  PDF(new window)
A new energetic thermoplastic elastomer based on the azidated polybutadiene(Az-PBD)/ethylene vinyl acetate copolymer (EVA) blends was prepared, and structure and properties of the blends were invetigated by SEM, DSC, DMA, tensile testing and combustion test. The Az-PBD was synthesized via a two-step process involving the addition reaction of commercially available 1,2-PBD with and subsequent nucleophilic substitution reaction of the brominated PBD with . EVA/Az-PBD with 90/10, 80/20, 70/30 (wt/wt) was prepared by a solution blending. SEM, DSC, and DMA results revealed that the blends are partially compatible and Az-PBD is dispersed in continuous EVA matrix. Tensile test showed that modulus and tension set increased while elongation-at-break of the blends decreased with increasing Az-PBD content in the blends, but all the blends showed a elongation at break as high as 700% and a tension set of less than 5%, indicating that the blends are typically elastomeric. Combustion test showed that, with increasing Az-PBD content in the blend, higher energy can be released.
Energetic Thermoplastic Elastomer (ETPE);Azidated Polybutadiene (Az-PBD);Ethylene-vinyl Acetate (EVA);Blend;
 Cited by
Hsieh, W. H., Peretz, A. Huang, I.-T. and Kuo, K. K. "Combustion Behavior of Boron-based BAMMO NMMO Fuel-rich Solidpropellants," J. Propul., 7(4), 497-504(1991). crossref(new window)

Miyazaki, T. and Kubota, N., "Energetics of BAMO," Propel. Explos. Pyrotech, 17(1), 5-9(1992). crossref(new window)

Talukder, M. A. H. and Lindsay, G. A., "Synthesis and the Preliminary Analysis of Block Copolymers of 3,3'-bis(azidomethyl)-oxetane and 3-nitratomethyl-3'-methyloxetane," J. Polym. Sci. Part A: Polym. Chem., 28(9), 2393-2401(1990). crossref(new window)

Eroglu, M. S. and Guven, O, "Spectroscopic and Thermal Characterization of Poly(glycidyl azide) Converted from Polyepichlorohydrin," J. Appl. Polym. Sci., 60(9), 1361-1367(1996). crossref(new window)

Varma, I. K., "High Energy Binders: Glycidyl Azide and Allyl Azide Polymer," Macromol Symp, 210, 121-129(2004).

Eroglu, M. S. and Guven, O., "Characterization of Network Structure of Poly(glycidyl azide) Elastomers by Swelling, Solubility and Mechanical Measurements," Polymer, 39(5), 1173-1176(1998). crossref(new window)

Bui, V. T., Ahad, E., Rheaume, D. and Raymond, M. P., "Energetic Polyurethanes from Branched Glycidyl Azide Polymer and Copolymer," J. Appl. Polym. Sci., 62(1), 27-32(1996). crossref(new window)

Xue, H., Gao, H. and Shreeve, J. M., "Energetic Polymer Salts from 1-vinyl-1,2,4-triazole Derivatives," J. Polym. Sci. Part A: Polym. Chem., 46, 2414-2421(2008). crossref(new window)

Shin, J.-A., Lim, Y.-G. and Lee, K.-H., "Synthesis of Polymers Including Both Triazole and Tetrazole by Click Reaction," Bull. Korean Chem. Soc., 32(2), 547-552(2011). crossref(new window)

Manser, G. E. and Fletcher, R. W., "Energetic Thermoplastic Elastomers," Summary Report, Office of Naval Research Contract N00014- 87-C-0098(1988).

Diaz, E., Brousseau, P., Ampleman, G. and Prudhomme, R. E., "Heats of Combustion and Formation of New Energetic Thermoplastic Elastomers Based on GAP, PolyNIMMO and PolyGLYN," PROPELLANT-EXPLOS-PYROTECH, 28(3), 101-106(2003). crossref(new window)

Pisharath, S. and Ang, H. G., "Synthesis and Thermal Decomposition of GAP-Poly(BAMO) Copolymer," Polym Degrad Stab, 92(7), 1365-1377(2007). crossref(new window)

Duo, Y., Tan, H. and Chen, F., "Synthesis and Characterization of Thermoplastic Polyurethanes as Binder for Novel Thermoplastic Propellant," J. Appl. Polym. Sci., 83(14), 2961-2966(2002). crossref(new window)

Walker, B. M. and Rader, C. P., "Handbook of Thermoplastic Elastomers," 2ndEd. New York(1998).

De, S. K. and Bhowmick, A. K., "Thermoplastic Elastomers from Rubber-plastic Blends," Ellis Horwood, New York(1990).

Jin, S. H., Song, G. S. and Lee, D. S., "Thermal Properties of the Themoplastic Elastomers Based on EPDM Ionomer/polyamide-6 Blends," Korean Chem Eng Res, 50(1), 167-172(2012). crossref(new window)

Choi, M.-C., Chang, Y.-W., Noh, S.-T., Kwon, J., Kim, D.-K. and Kwon, S.-K., "Energetic Thermoplastic Elastomers from Azidated Polyepichlorohydrin Rubber (Az-PECH)/styrene Acrylonitrile Copolymer (SAN) Blends," J. Korean Ind. Eng. Chem, 20(4), 375-380(2009).



Shi, X. M., Zhang, J., Jin, J. and Chen, S. J., "Non-isothermal Crystallization and Melting of Ethylene-vinyl Acetate Copolymers with Different Vinyl Acetate Contents," eXPRESS Polym. Lett. 2(9), 623-629(2008). crossref(new window)