JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Optimization of Anthraquinone Dyes Decolorization Conditions with Response Surface Methodology by Aspergillus
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Korean Chemical Engineering Research
  • Volume 53, Issue 3,  2015, pp.327-332
  • Publisher : The Korean Institute of Chemical Engineers
  • DOI : 10.9713/kcer.2015.53.3.327
 Title & Authors
Optimization of Anthraquinone Dyes Decolorization Conditions with Response Surface Methodology by Aspergillus
Ge, Yufeng; Wei, Bin; Wang, Siyu; Guo, Zhiguo; Xu, Xiaolin;
  PDF(new window)
 Abstract
A large amount of dye wastewater poses a threat to environmental safety. Disperse blue, an anthraquinone dye that is widely used in textile dyes, is difficult to degrade in wastewater. In this work, one fungus was screened according to the decolorization rate of disperse blue. The fungus was identified and named Aspergillus XJ-2 on the basis of its morphological characteristics and 18s rDNA. Response surface method was used to optimize culture conditions for A. XJ-2. The optimum values of obtained responses were as follows: temperature, ; pH, 5.2; carbon-to-nitrogen ratio, 30:5.5; and rotation ratio, . Under optimized conditions, the decolorization rate of A. XJ-2 was up to 94.8% in 48 h.
 Keywords
Anthraquinone Dye;Decolorization;Fungi;Wastewater;Response Surface Method;
 Language
English
 Cited by
1.
sp. XJ-2 CGMCC12963, Bioengineered, 2017, 8, 5, 630  crossref(new windwow)
 References
1.
E. Sayan and M. E. Edecan, Ultrason. Sonochem., 15, 530 (2008). crossref(new window)

2.
D. P. Garcia, J. C. Francisco and B. German, J. Hazard. Mater., 250, 462 (2013).

3.
G. Chen, M. H. Huang, L. Chen and D. H. Chen, Int. Biodeterior. Biodegrad., 65, 790 (2011). crossref(new window)

4.
R. G. Saratale, G. D. Saratale, J. S. Chang and S. P. Govindwar, J. Taiwan. Inst. Chem. Eng., 42, 57 (2011).

5.
S. Asad, M. A. Amoozegar, A. A. Pourbabaee, M. N. Sarbolouki and S. M. M. Dastgheib, Bioresour. Technol., 98, 2082 (2007). crossref(new window)

6.
K. S. Rim, T. Mechichi, S. Sayadi and A. Dhouib, J. Microbiol., 50, 226 (2012). crossref(new window)

7.
X. K. Zeng, Y. J. Cai, X. R. Liao, X. L. Zeng, S. P. Luo and D. B. Zhang, Process. Biochem., 47, 160 (2012). crossref(new window)

8.
A. Srinivasan and V. Thiruvenkatachari, J. Environ. Manage., 91, 1915 (2010). crossref(new window)

9.
F. J. Deive, A. Dominguez, T. F. Barrio, Moscoso, P. Moran and M. A. Longo, J. Hazard. Mater., 182, 735 (2010). crossref(new window)

10.
I. A. Alaton, I. Kabdasli, B. Vardar and O. Tunay, J. Hazard. Mater., 150, 166 (2008). crossref(new window)

11.
M. Ozacar and I. A. Sengil, J. Hazard. Mater., 98, 211 (2003). crossref(new window)

12.
K. Papadopoulou, I. M. Kalagona, A. Philippoussis and F. Rigas, Int. Biodeterior. Biodegrad., 77, 31 (2013). crossref(new window)

13.
D. M. Cao, X. Xiao, Y. M. Wu, X. B. Ma, M. N. Wang, Y. Y. Wu and D. L. Du, Bioresour. Technol., 136,176 (2013). crossref(new window)

14.
X. M. Meng, G. F. Liu, J. T. Zhou and Q. S. Fu, Bioresour. Technol., 151, 63 (2014). crossref(new window)

15.
Y. Y. Qu, S. G. Shi, F. Ma and B. Yan, Bioresour. Technol., 101, 8016 (2010). crossref(new window)

16.
Y. Y. Su, Y. F. Zhang, J. Wang, J. T. Zhou, X. B. Lu and H. Lu. Bioresour. Technol., 100, 2982 (2009). crossref(new window)

17.
L. J. Zhao, J. T. Zhou, Y. H. Jia and J. F. Chen, J. Hazard. Mater., 181, 602 (2010). crossref(new window)

18.
M. Karatas, Y. A. Argun and M. E. Argun, J. Ind. Eng. Chem., 18, 1058 (2012). crossref(new window)

19.
M. Neifar, A. Jaouani, M. J. Martinez and M. J. Penninckx, J. Microbiol., 50, 746 (2012). crossref(new window)

20.
A. R. Khataee, M. Zarei, M. Fathinia and M. Khobnasab Jafari, Desalination, 268, 126 (2011). crossref(new window)

21.
M. S. Ferhan, N. I. Santos, S. N. Melo and Y. M. Sain, World. J. Microb. Biot., 29, 2437 (2013). crossref(new window)

22.
X. C. Jin and Y. Ning, J. Hazard. Mater., 26, 2870 (2013).