JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Increase in Voltage Efficiency of Picoinjection using Microfluidic Picoinjector Combined Faraday Moat with Silver Nanoparticles Electrode
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Korean Chemical Engineering Research
  • Volume 53, Issue 4,  2015, pp.472-477
  • Publisher : The Korean Institute of Chemical Engineers
  • DOI : 10.9713/kcer.2015.53.4.472
 Title & Authors
Increase in Voltage Efficiency of Picoinjection using Microfluidic Picoinjector Combined Faraday Moat with Silver Nanoparticles Electrode
Noh, Young Moo; Jin, Si Hyung; Jeong, Seong-Geun; Kim, Nam Young; Rho, Changhyun; Lee, Chang-Soo;
  PDF(new window)
 Abstract
This study presents modified microfluidic picoinjector combined Faraday moat with silver nanoparticle electrode to increase electrical efficiency and fabrication yield. We perform simple dropping procedure of silver nanoparticles near the picoinjection channel, which solve complicate fabrication process of electrode deposition onto the microfluidic picoinjector. Based on this approach, the microfluidic picoinjector can be reliably operated at 180 V while conventional Faraday moat usually have performed above 260 V. Thus, we can reduce the operation voltage and increase safety. Furthermore, the microfluidic picoinjector is able to precisely control injection volume from 7.5 pL to 27.5 pL. We believe that the microfluidic picoinjector will be useful platform for microchemical reaction, biological assay, drug screening, cell culture device, and toxicology.
 Keywords
Microfluidics;Droplet;Picoinjector;Silver Nanoparticles;Electrode;
 Language
Korean
 Cited by
 References
1.
Whitesides, G. M., "The Origins and the Future of Microfluidics," Nature, 442(7101), 368-373(2006). crossref(new window)

2.
Jung, J. H. and Lee, C. S., "Droplet Based Microfluidic System," Korean Chem. Eng. Res., 48(5), 545-555(2010).

3.
Jeong, H. H., Lee, S. H. and Lee, C. S., "Pump-less Static Microfluidic Device for Analysis of Chemotaxis of Pseudomonas Aeruginosa Using Wetting and Capillary Action," Biosens. Bioelectron., 47, 278-84(2013). crossref(new window)

4.
Jang, S. C., Jeong, H. H. and Lee, C. S., "Analysis of Pseudomonas Aeruginosa Motility in Microchannels," Korean Chem. Eng. Res., 50, 743-748(2012).

5.
Jeong, H. H., Lee, S. H., Kim, J. M., Kim, H. E., Kim, Y. G., Yoo, J. Y., Chang, W. S. and Lee, C. S., "Microfluidic Monitoring of Pseudomonas Aeruginosa Chemotaxis Under the Continuous Chemical Gradient," Biosens. Bioelectron., 26(2), 351-6(2010). crossref(new window)

6.
Kang, S. M., Choi, C. H., Hwang, S., Jung, J. M. and Lee, C. S., "Microfluidic Preparation of Monodisperse Multiple Emulsion Using Hydrodynamic Control," Korean Chem. Eng. Res., 50, 733-737(2012). crossref(new window)

7.
Nam, J. O., Choi, C. H., Kim J., Kang, S. M. and Lee, C. S., "Fabrication of Polymeric Microcapsules in a Microchannel Using Formation of Double Emulsion," Korean Chem. Eng. Res., 51(5), 597-601(2013). crossref(new window)

8.
Ko, K. K. and Kim, I. H., "Lysozyme Crystallization in Dropletbased Microfluidic Device," Korean Chem. Eng. Res., 51(6), 760-765(2013). crossref(new window)

9.
Song, Y. S. and Lee, C. S., "In situ Gelation of Monodisperse Alginate Hydrogel in Microfluidic Channel Based on Mass Transfer of Calcium Ions," Korean Chem. Eng. Res., 52(5), 632-637(2014). crossref(new window)

10.
Jeong, H. H., Noh, Y. M., Jang, S. C. and Lee, C. S., "Dropletbased Microfluidic Device for High-throughput Screening," Korean Chem. Eng. Res., 52(2), 141-153(2014). crossref(new window)

11.
Jin, S. H., Kim, J., Jang, S. C., Noh, Y. M. and Lee, C. S., "Stagnation of Droplet for Efficient Merging in Microfluidic System," Korean Chem. Eng. Res., 52(1), 106-112(2014). crossref(new window)

12.
Leung, K., Zahn, H., Leaver, T., Konwar, K. M., Hanson, N. W., Page, A. P., Lo, C. C., Chain, P. S., Hallam, S. J. and Hansen, C. L., "A Programmable Droplet-based Microfluidic Device Applied to Multiparameter Analysis of Single Microbes and Microbial Communities," Proc. Natl. Acad. Sci. USA, 109(20), 7665-7670(2012).

13.
Miller, O. J., Harrak, A. E., Mangeat, T., Baret, J. C., Frenz, L., Debs, B. E., Mayot, E., Samuels, M. L., Rooney, E. K., Dieu, P., Galvan, M., Link, D. R. and Griffiths, A. D., "High-resolution Dose-response Screening Using Droplet-based Microfluidics," Proc. Natl. Acad. Sci. USA, 109(2), 378-383(2012).

14.
Baroud, C. N., de Saint Vincent, M. R. and Delville, J. P., "An Optical Toolbox for Total Control of Droplet Microfluidics," Lab Chip, 7(8), 1029-1033(2007). crossref(new window)

15.
Niu, X., Gulati, S., Edel, J. B. and deMello, A. J., "Pillar-induced Droplet Merging in Microfluidic Circuits," Lab Chip, 8(11), 1837-1841(2008). crossref(new window)

16.
Liu, K., Ding, H., Chen, Y. and Zhao, X. Z., "Droplet-based Synthetic Method Using Microflow Focusing and Droplet Fusion," Microfluid. Nanofluid., 3, 239-243(2007). crossref(new window)

17.
Xu, B., Nguyen, N. and Wong, T. N., "Temperature-induced Droplet Coalescence in Microchannels," Biomicrofluidics, 6, 012811(2012). crossref(new window)

18.
Mazutis, L., Baret, J. C., Treacy, P., Skhiri, Y., Araghi, A. F., Ryckelynck, M., Taly, V. and Griffiths, A. D., "Multi-step Microfluidic Droplet Processing: Kinetic Analysis of an in vitro Translated Enzyme," Lab Chip, 9(20), 2902-2908(2009). crossref(new window)

19.
Zagnoni, M., Lain, G. L. and Cooper, J. M., "Electrocoalescence Mechanisms of Microdroplets Using Localized Electric Fields in Microfluidic Channels," Langmuir, 26(18), 14443-14449(2010). crossref(new window)

20.
Ahn, K. and Agresti, J., "Electrocoalescence of Drops Synchronized by Size-dependent Flow in Microfluidic Channels," Appl. Phys. Lett., 88, 264105(2006). crossref(new window)

21.
Mazutis, L. and Griffiths, A. D., "Selective Droplet Coalescence Using Microfluidic Systems," Lab Chip, 12(10), 1800-1806(2012). crossref(new window)

22.
Niu, X., Gielen, F., Edel, J. B. and deMello, A. J., "A Microdroplet Dilutor for High-throughput Screening," Nat. Chem., 3(6), 437-442(2011). crossref(new window)

23.
Abate, A. R., Hung, T., Mary, P., Agresti, J. J. and Weitz, D. A., "High-throughput Injection with Microfluidics Using Picoinjectors," Proc. Natl. Acad. Sci. USA, 107(45), 19163-19166(2010).

24.
Sciambi, A. and Abate, A. R., "Generating Electric Fields in PDMS Microfluidic Devices with Salt Water Electrodes," Lap Chip, 14(15), 2605-2609(2014). crossref(new window)

25.
Khosla, A., "Nanoparticle-doped Electrically-conducting Polymers for Flexible Nano-micro Systems," Interface, 21, 67(2012).

26.
Holtze, C., Rowat, A. C., Agresti, J. J., Hutchison, J. B., Angile, F. E., Schmitz, C. H. J., Koster, S., Duan, H., Humphry, K. J., Scanga, R. A., Johnson, J. S., Pisignano, D. and Weitz, D. A., "Biocompatible Surfactants for Water-in-fluorocarbon Emulsions," Lab Chip, 8(10), 1632-1639(2008). crossref(new window)

27.
Link, D. R., Grasland-Mongrain, E., Duri, A., Sarrazin, F., Cheng, Z. D., Cristobal, G., Marquez, M. and Weitz, D. A., "Electric Control of Droplets in Microfluidic Devices," Angew. Chem. Int. Ed. Engl, 45(16), 2556-2560(2006). crossref(new window)

28.
Sciambi, A. and Abate, A. R., "Adding Reagent to Droplets with Controlled Rupture of Encapsulated Double Emulsions," Biomicrofluidics, 7, 044112-1(2013). crossref(new window)

29.
Zhou, J., Ren, K., Zheng, Y., Su, J., Zhao, Y., Ryan, D. and Wu, H., "Fabrication of a Microfluidic Ag/AgCl Reference Electrode and Its Application for Portable and Disposable Electrochemical Microchips," Electrophoresis, 31, 3083-3089(2010). crossref(new window)

30.
O'Donovan, B., Eastburn, D. J. and Abate, A. R., "Electrode-free Picoinjection of Microfluidic Drops," Lap Chip, 12(20), 4029-4032(2012). crossref(new window)

31.
Rhee, M., Light, Y. K., Yilmaz, S., Adams, P. D., Saxena, D., Meagher, R. J. and Singh, A. K., "Pressure Stabilizer for Reproducible Picoinjection in Droplet Microfluidic Systems," Lap Chip, 14(23), 4533-4539(2014). crossref(new window)