JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CoO Thin Nanosheets Exhibit Higher Antimicrobial Activity Against Tested Gram-positive Bacteria Than Gram-negative Bacteria
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Korean Chemical Engineering Research
  • Volume 53, Issue 5,  2015, pp.565-569
  • Publisher : The Korean Institute of Chemical Engineers
  • DOI : 10.9713/kcer.2015.53.5.565
 Title & Authors
CoO Thin Nanosheets Exhibit Higher Antimicrobial Activity Against Tested Gram-positive Bacteria Than Gram-negative Bacteria
Khan, Shams Tabrez; Wahab, Rizwan; Ahmad, Javed; Al-Khedhairy, Abdulaziz A.; Siddiqui, Maqsood A.; Saquib, Quaiser; Ali, Bahy A.; Musarrat, Javed;
  PDF(new window)
 Abstract
Envisaging the role of Co in theranautics and biomedicine it is immensely important to evaluate its antimicrobial activity. Hence in this study CoO thin nanosheets (CoO-TNs) were synthesized using wet chemical solution method at a very low refluxing temperature () and short time (60 min). Scanning electron microscopy of the grown structure revealed microflowers () composed of thin sheets petals (60~80 nm). The thickness of each individual grown sheet varies from 10~20 nm. Antimicrobial activities of CoO-TNs against two Gram positive bacteria (Micrococcus luteus, and Staphylococcus aureus), and two Gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa) were determined. A 98% and 65% growth inhibition of M. luteus and S. aureus respectively, was observed with of CoO-TNs compared to 39 and 34% growth inhibition of E. coli and P. aeruginosa, respectively with the same concentration of CoO-TNs. Hence, synthesized CoO-TNs exhibited antimicrobial activity against Gram negative bacteria and an invariably higher activity against tested Gram positive bacteria. Therefore, synthesized CoO-TNs are less prone to microbial infections.
 Keywords
Nanostructures;CoO-TNs;Antibacterial Activity;Theranautics;
 Language
English
 Cited by
1.
“Miswak” Based Green Synthesis of Silver Nanoparticles: Evaluation and Comparison of Their Microbicidal Activities with the Chemical Synthesis, Molecules, 2016, 21, 11, 1478  crossref(new windwow)
2.
Band Gap Engineering of Titania Film through Cobalt Regulation for Oxidative Damage of Bacterial Respiration and Viability, ACS Applied Materials & Interfaces, 2017, 9, 33, 27475  crossref(new windwow)
 References
1.
O. V. Salata, J. Nanobiotechnol., 2, 1(2004). crossref(new window)

2.
N. Sanvicens and M. P. Marco, Trends Biotechnol., 26, 425(2008). crossref(new window)

3.
L. Zhang, F. X. Gu, J. M. Chan, A. Z. Wang, R. S. Langer, and O. C. Farokhzad, Hum Mutat., 83, 761(2008).

4.
S. T. Khan, M. Ahamed, J. Musarrat, and A. A. Al-Khedhairy, Eur. J. Oral Sci., 123, 397(2014).

5.
H. Kim, K. H. Baik, J. Kim, and S. Jang, Korean Chem. Eng. Res., 51, 292(2013). crossref(new window)

6.
D. T. Nguyen and K.-S. Kim, Korean J. Chem. Eng., 31, 1289(2014). crossref(new window)

7.
A. Akberzadeh, M. Samiei, and S. Davaran, Nanoscale Res Lett., 7, 144(2012). crossref(new window)

8.
K. Wang, J. J. Xu, and H. Y. Chen, Biosens. Bioelectron., 20, 1388(2005). crossref(new window)

9.
Q. M. Kainz, S. Fernandes, C. M. Eichenseer, F, Besostri, H. Korner, R. Muller, and O. Reiser, Faraday Discuss., (2014).

10.
J. R. Thomas, J. Appl. Phys., 37, 2914(1966). crossref(new window)

11.
D. P. Dinega, M. G. Bawendi, and Angew, Chem. Int. Ed., 38, 1788(1999). crossref(new window)

12.
T. O. Ely, C. Pan, C. Amiens, B. Chaudret, F. Dassenoy, P. Lecante, M. J. Casanove, A. Mosset, M. Respaud, and J. M. Broto, J. Phys. Chem. B, 104, 695(2000). crossref(new window)

13.
J. Devanneaux and J. Maurin, J. Catal., 69, 202(1981). crossref(new window)

14.
Y. Teng, H. Sakurai, A. Ueda, and T. Kobayashi, Int. J. Hydrogen Energy, 24, 355(1999). crossref(new window)

15.
J. S. Chen, T. Zhu, Q. H. Hu, J. Gao, F. Su, S. Z. Qiao, and X. W. Lou, ACS Appl. Mater. Interfaces, 2, 3628(2010). crossref(new window)

16.
D. S. Wang, X. L. Ma, Y. G. Wang, L. Wang, Z. Y. Wang, W. Zheng, X. M. He, J. Li, Q. Peng, and Y. Li, Nano Res., 3, 1-7(2010). crossref(new window)

17.
Y. Zhang, J. Zhu, X. Song, and X. Zhong, J. Phys. Chem. C, 112, 5322(2008). crossref(new window)

18.
G. P. Glaspell, P. W. Jagodzinski, and A. Manivannan, J. Phys. Chem. B, 108, 9607(2004).

19.
J. Cordero, L. Munuera, and M. D. Folgueira, J. Bone Joint Surg. Br., 76, 717(1994).

20.
J. W. Costerton, L. Montanaro, and C. R. Arciola, Int. J. Artif., Organs, 28, 1062(2005). crossref(new window)

21.
G. M. Nazeruddin and Y. I. Shaikh, RJPBCS, 5, 225(2014).

22.
A. Azam, A. S. Ahmed, M. Oves, M. S. Khan, and S. S. Habib, Int. J. Nanomed., 7, 6003(2012).

23.
M. Khan, S. T. Khan, M. Khan, S. F. Adil, J. Musarrat, A. A. Al-Khedhairy, A. Al-Warthan, M. R. Siddiqui, and H. Z. Alkhathlan, Int. J. Nanomed., 28, 3551(2014).

24.
M. Premanathan, K. Karthikeyan, K. Jeyasubramanian, and G. Manivannan, Nanomed., 7, 184(2011). crossref(new window)

25.
A. Hassen, N. Saidi, M. Cherif, and A. Boudabous, Bioresour. Technol., 65, 73(1998). crossref(new window)

26.
H. Nikaido, Microbiol. Mol. Biol. Rev., 67, 593(2003). crossref(new window)