JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Comparison of Pectin Hydrogel Collection Methods in Microfluidic Device
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Korean Chemical Engineering Research
  • Volume 53, Issue 6,  2015, pp.740-745
  • Publisher : The Korean Institute of Chemical Engineers
  • DOI : 10.9713/kcer.2015.53.6.740
 Title & Authors
Comparison of Pectin Hydrogel Collection Methods in Microfluidic Device
Kim, Chaeyeon; Park, Ki-Su; Kang, Sung-Min; Kim, Jongmin; Song, YoungShin; Lee, Chang-Soo;
  PDF(new window)
 Abstract
This study investigated the effect of different collection methods on physical properties of pectin hydrogels in microfluidic synthetic approach. The pectin hydrogels were simply produced by the incorporation of calcium ions dissolved in continuous mineral oil. Then, different collection methods, pipetting, tubing, and settling, for harvesting pectin hydrogels were applied. The settling method showed most uniform and monodispersed hydrogels. In the case of settling, a coefficient of variation was 3.46 which was lower than pipetting method (18.60) and tubing method (14.76). Under the settling method, we could control the size of hydrogels, ranging from to , by simple manipulation of the viscosity of pectin and volumetric flow rate of dispersed and continuous phase. Finally, according to the characteristics of simple encapsulation of biological materials, we envision that the pectin hydrogels can be applied to drug delivery, food, and biocompatible materials.
 Keywords
Microfluidics;Pectin;Hydrogel;Collection method;Monodisperse;
 Language
Korean
 Cited by
 References
1.
Hoare, T. R. and Kohane, D. S., "Hydrogels in Drug Delivery: Progress and Challenges," Polymer, 49, 1993-2007(2008). crossref(new window)

2.
Lian, Z. and Ye, L., "Synthesis and Properties of Carboxylated Poly(vinyl alcohol) Hydrogels for Wound Dressings," J. Polym. Res., 22, 1-11(2015). crossref(new window)

3.
Lee, E. and Kim, B., "Smart Delivery System for Cosmetic Ingredients Using pH-sensitive Polymer Hydrogel Particles," Korean J. Chem. Eng., 28, 1347-1350(2011). crossref(new window)

4.
Enas M. A., "Hydrogels: Methods of Preparation, Characterisation and Applications: A Review," J. Adv. Res., 6, 105-121(2015). crossref(new window)

5.
Bajpai, A., Shukla, S. K., Bhanu, S. and Kankane, S., "Responsive Polymers in Controlled Drug Delivery," Prog. Polym. Sci., 33, 1088-1118(2008). crossref(new window)

6.
Zhao, Q. S., Ji, Q. X., Xing, K., Li, X. Y., Liu, C. S. and Chen, X. G., "Preparation and Characteristics of Novel Porous Hydrogel Films Based on Chitosan and Glycerophosphate," Carbohydr. Polym., 76, 410-416(2009). crossref(new window)

7.
Allwyn, S. R. A., Rubila, R. J. S. and Ranganathan, T. V., "A Review on Pectin: Chemistry Due to General Properties of Pectin and its Pharmaceutical Uses," Sci. Rep., 1, 550-551(2012).

8.
Munarin, F., Petrini, P., Tanzi, M. C., Barbosa, M. A. and Granja, P. L., "Biofunctional Chemically Modified Pectin for Cell Delivery," Soft Matter, 8, 4731-4739(2012). crossref(new window)

9.
Ngouemazong, D. E., Jolie, R. P., Cardinaels, R., Fraeye, I., Van Loey, A., Moldenaers, P. and Hendrickx, M., "Stiffness of $Ca^{2+}$-pectin Gels: Combined Effects of Degree and Pattern of Methylesterification for Various $Ca^{2+}$ Concentrations," Carbohydr. Res., 348, 69-76(2012). crossref(new window)

10.
Munarin, F., Munarin, F., Guerreiro, S. G., Grellier, M. A., Tanzi, M. C., Barbosa, M. A., Petrini, P. and Granja, P. L., "Pectin-based Injectable Biomaterials for Bone Tissue Engineering," Biomacromolecules, 12, 568-577(2011). crossref(new window)

11.
Silva, C. M., Ribeiro, A. J., Figueiredo, I. V., Goncalves, A. R. and Veiga, F., "Alginate Microspheres Prepared by Internal Gelation: Development and Effect on Insulin Stability," Int. J. Pharm., 311, 1-10(2006). crossref(new window)

12.
Jeong, H. H., Jin, S. H., Lee, B. J., Kim, T. and Lee, C. S., "Microfluidic Static Droplet Array for Analyzing Microbial Communication on a Population Gradient," Lab Chip, 15, 889-899(2015). crossref(new window)

13.
Jin S. H., Kim J., Jang S. C., Noh Y. M. and Lee C. S., "Stagnation of Droplet for Efficient Merging in Microfluidic System," Korean Chem. Eng. Res., 52, 106-112(2014). crossref(new window)

14.
Wieduwild, R., Krishnan, S., Chwalek, K., Boden, A., Nowak, M., Drechsel, D., Werner, C. and Zhang, Y., "Noncovalent Hydrogel Beads as Microcarriers for Cell Culture," Angew. Chem. Int. Ed., 54, 3962-3966(2015). crossref(new window)

15.
Tan, Y. C., Hettiarachchi, K., Siu, M., Pan, Y. R., Lee, A. P., "Controlled Microfluidic Encapsulation of Cells, Proteins, and Microbeads in Lipid Vesicles," J. Am. Chem. Soc., 128, 5656-5658(2006). crossref(new window)

16.
Orive, G., Hernandez, R. M., Gascon, A. R., Calafiore, R., Chang, T. M., De Vos, P., Hortelano, G., Hunkeler, D., Lacik, ShapiroI, A. J. and Pedraz J. L., "Cell Encapsulation: Promise and Progress," Nat. Med., 9, 104-107(2003). crossref(new window)

17.
Vinogradov, S. V., Bronich, T. K. and Kabanov, A. V., "Nanosized Cationic Hydrogels for Drug Delivery: Preparation, Properties and Interactions with Cells," Adv. Drug Deliv., 54, 135-147(2002). crossref(new window)

18.
Sjostrom, S. L., Joensson, H. N. and Svahn, H. A., "Multiplex Analysis of Enzyme Kinetics and Inhibition by Droplet Microfluidics Using Picoinjectors," Lab Chip, 13, 1754-1761(2013). crossref(new window)

19.
Park, K. J., Lee, K. G., Seok, S., Choi, B. G., Lee, M. K., Park, T. J., Park, J. Y., Kim, D. H. and Lee, S. J., "Micropillar Arrays Enabling Single Microbial Cell Encapsulation in Hydrogels," Lab Chip, 14, 1873-1879(2014). crossref(new window)

20.
Chau, M., Abolhasani, M., Therien-Aubin, H., Li, Y., Wang, Y., Velasco, D., Tumarkin, E., Ramachandran, A. and Kumacheva, E., "Microfluidic Generation of Composite Biopolymer Microgels with Tunable Compositions and Mechanical Properties," Biomacromolecules, 15, 2419-2425(2014). crossref(new window)

21.
Marquis, M. l., Davy, J., Fang, A. and Renard, D., "Microfluidics-Assisted Diffusion Self-Assembly: Toward the Control of the Shape and Size of Pectin Hydrogel Microparticles," Biomacromolecules, 15, 1568-1578(2014). crossref(new window)

22.
Tan, W. H. and Takeuchi, S., "Monodisperse Alginate Hydrogel Microbeads for Cell Encapsulation," Adv. Mater., 19, 2696-2701 (2007). crossref(new window)

23.
Chan, L., Lee, H. and Heng, P., "Production of Alginate Microspheres by Internal Gelation Using an Emulsification Method," Int. J. Pharm., 242, 259-262(2002). crossref(new window)

24.
Lin, Y. S., Yang, C. H., Hsu, Y. Y. and Hsieh, C. L., "Microfluidic Synthesis of Tail-shaped Alginate Microparticles Using Slow Sedimentation," Electrophoresis, 34, 425-431(2013). crossref(new window)

25.
Mele, E., Fragouli, D., Ruffilli, R., De Gregorio, G. L., Cingolani, R. and Athanassiou, A., "Complex Architectures Formed by Alginate Drops Floating on Liquid Surfaces," Soft Matter, 9, 6338-6343(2013). crossref(new window)

26.
Hu, Y., Wang, Q., Wang, J., Zhu, J., Wang, H. and Yang, Y., "Shape Controllable Microgel Particles Prepared by Microfluidic Combining External Ionic Crosslinking," Biomicrofluidics, 6, 026502-026509(2012). crossref(new window)

27.
Song, Y. and Lee, C. S., "In situ Gelation of Monodisperse Alginate Hydrogel in Microfluidic Channel Based on Mass Transfer of Calcium Ions," Korean Chem. Eng. Res., 52, 632-637(2014). crossref(new window)

28.
Bremond, N., Thiam, A. R. and Bibette, J., "Decompressing Emulsion Droplets Favors Coalescence," Phys. Rev. Lett., 100, 024501-024504(2008). crossref(new window)

29.
Liu, K., Ding, H., Chen, Y. and Zhao, X. Z., "Droplet-based Synthetic Method Using Microflow Focusing and Droplet Fusion," Microfluid Nanofluidics, 3, 239-243(2007). crossref(new window)

30.
Hu, Y., Azadi, G. and Ardekani, A. M., "Microfluidic Fabrication of Shape-tunable Alginate Microgels: Effect of Size and Impact Velocity," Carbohydr. Polym., 120, 38-45(2015). crossref(new window)

31.
Choi, C. H., Jung, J. H., Hwang, T. S. and Lee, C. S., "In situ Microfluidic Synthesis of Monodisperse PEG Microspheres," Macromol. Res., 17, 163-167(2009). crossref(new window)

32.
Zhang, S., "Hydrogels: Wet or Let Die," Nat. Mat., 3, 7-8(2004). crossref(new window)

33.
Thakur, B. R., Singh, R. K., Handa, A. K. and Rao, M. A., "Chemistry and Uses of Pectin-a Review," Critical Reviews in Food Science & Nutrition, 37, 47-73(1997). crossref(new window)

34.
Agarwal, P., Zhao, S., Bielecki, P., Rao, W., Choi, J. K., Zhao, Y. and He, X., "One-step Microfluidic Generation of Pre-hatching Embryo-like Core-shell Microcapsules for Miniaturized 3D Culture of Pluripotent Stem Cells," Lab on a Chip, 13, 4525-4533 (2013). crossref(new window)