JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Analysis on Thermal Effects of Process Channel Geometry for Microchannel Fischer-Tropsch Reactor Using Computational Fluid Dynamics
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Korean Chemical Engineering Research
  • Volume 53, Issue 6,  2015, pp.818-823
  • Publisher : The Korean Institute of Chemical Engineers
  • DOI : 10.9713/kcer.2015.53.6.818
 Title & Authors
Analysis on Thermal Effects of Process Channel Geometry for Microchannel Fischer-Tropsch Reactor Using Computational Fluid Dynamics
Lee, Yongkyu; Jung, Ikhwan; Na, Jonggeol; Park, Seongho; Kshetrimayum, Krishnadash S.; Han, Chonghun;
  PDF(new window)
 Abstract
In this study, FT reaction in a microchannel was simulated using computational fluid dynamics(CFD), and sensitivity analyses conducted to see effects of channel geometry variables, namely, process channel width, height, gap between process channel and cooling channel, and gap between process channels on the channel temperature profile. Microchannel reactor considered in the study is composed of five reaction channels with height and width ranging from 0.5 mm to 5.0 mm. Cooling surfaces is assumed to be in isothermal condition to account for the heat exchange between the surface and process channels. A gas mixture of and CO( molar ratio
 Keywords
Fischer-Tropsch;Computational Fluid Dynamics;Exothermic;Microchannel Geometry;Process Channel;Reactor Internal Temperature;
 Language
Korean
 Cited by
 References
1.
Kim, H.-J., Choi, D.-K., Ahn, S.-I., Kwon, H. and Lim, H.-W., "Gtl Fpso-an Alternative Solution to Offshore Stranded Gas," Ratio, 1, $H_2O$(2014).

2.
Sousa-Aguiar, E. F., Noronha, F. B. and Faro Jr, A., "The Main Catalytic Challenges in Gtl (gas-to-liquids) Processes," Catalysis Science & Technology, 1, 698(2011). crossref(new window)

3.
Van Loenhout, A., Van Zeelenberg, L., Roth, G., van Sheehan, E. and Jannasch, N., "Commercialization of Stranded Gas with a Combined Oil and Gtl Fpso," Offshore Technology Conference, Offshore Technology Conference(2006).

4.
Wilhelm, D., Simbeck, D., Karp, A. and Dickenson, R., "Syngas Production for Gas-to-liquids Applications: Technologies, Issues and Outlook," Fuel Process. Technol., 71, 139(2001). crossref(new window)

5.
Franz, F. and Hans, T., "Process for the Production of Paraffin-hydrocarbons with More Than one Carbon Atom," Google Patents (1930).

6.
Iglesia, E., "Design, Synthesis, and Use of Cobalt-based Fischer-tropsch Synthesis Catalysts," Appl. Catal. A: Gen., 161, 59(1997).

7.
Almeida, L., Echave, F., Sanz, O., Centeno, M., Arzamendi, G., Gandia, L., Sousa-Aguiar, E., Odriozola, J. and Montes, M., "Fischer-tropsch Synthesis in Microchannels," Chem. Eng. J., 167, 536(2011). crossref(new window)

8.
Knochen, J., Guttel, R., Knobloch, C. and Turek, T., "Fischer-tropsch Synthesis in Milli-structured Fixed-bed Reactors: Experimental Study and Scale-up Considerations," Chem. Eng. Process: Process Intensification, 49, 958(2010).

9.
Gumuslu, G. and Avci, A. K., "Parametric Analysis of Fischer-tropsch Synthesis in a Catalytic Microchannel Reactor," AIChE J., 58, 227(2012). crossref(new window)

10.
Keyser, M. J., Everson, R. C. and Espinoza, R. L., "Fischer-tropsch Kinetic Studies with Cobalt-manganese Oxide Catalysts," Ind. Eng. Chem. Res., 39, 48(2000). crossref(new window)

11.
Davis, B. H., "Fischer-tropsch Synthesis: Overview of Reactor Development and Future Potentialities," Top. Catal., 32, 143(2005). crossref(new window)

12.
LeViness, S., Tonkovich, A., Jarosch, K., Fitzgerald, S., Yang, B. and McDaniel, J., "Improved Fischer-tropsch Economics Enabled by Microchannel Technology," White Paper generated by Velocys( 2011).

13.
Vosloo, A. C., "Fischer-tropsch: A Futuristic View," Fuel Process. Technol., 71, 149(2001). crossref(new window)

14.
Deshmukh, S. R., Tonkovich, A. L. Y., Jarosch, K. T., Schrader, L., Fitzgerald, S. P., Kilanowski, D. R., Lerou, J. J. and Mazanec, T. J., "Scale-up of Microchannel Reactors for Fischer-tropsch Synthesis," Ind. Eng. Chem. Res., 49, 10883(2010). crossref(new window)

15.
Hasan, M. I., Rageb, A., Yaghoubi, M. and Homayoni, H., "Influence of Channel Geometry on the Performance of a Counter Flow Microchannel Heat Exchanger," Int. J. Therm. Sci., 48, 1607(2009). crossref(new window)

16.
Guo, Z.-Y. and Li, Z.-X., "Size Effect on Microscale Single-phase Flow and Heat Transfer," Int. J. Therm. Sci., 46, 149 (2003).

17.
Peng, X. and Peterson, G., "The Effect of Thermofluid and Geometrical Parameters on Convection of Liquids Through Rectangular Microchannels," Int. J. Therm. Sci., 38, 755(1995).

18.
Na, J., Jung, I., Kshetrimayum, K. S., Park, S., Park, C. and Han, C., "Computational Fluid Dynamics Study of Channel Geometric Effect for Fischer-tropsch Microchannel Reactor," Korean Chem. Eng. Res., 52, 826(2014). crossref(new window)

19.
Arzamendi, G., Dieguez, P., Montes, M., Odriozola, J., Falabella Sousa-Aguiar, E. and Gandia, L., "Computational Fluid Dynamics Study of Heat Transfer in a Microchannel Reactor for Low-temperature Fischer-tropsch Synthesis," Chem. Eng. J., 160, 915(2010). crossref(new window)

20.
Van Der Laan, G. P. and Beenackers, A., "Kinetics and Selectivity of the Fischer-tropsch Synthesis: A Literature Review," Catalysis Reviews, 41, 255(1999). crossref(new window)

21.
Tonkovich, A. L., Yuschak, T., Neagle, P. W., Marco, J. L., Marco, J. D., Marchiando, M. A., Keyes, L. W., Deshmukh, S. and Luzenski, R. J., "Laminated, Leak-resistant Chemical Processors; Methods of Making, and Methods of Operating," Google Patents(2012).

22.
Zhu, X., Lu, X., Liu, X., Hildebrandt, D. and Glasser, D., "Heat Transfer Study with and Without Fischer-tropsch Reaction in a Fixed Bed Reactor with tio2, sio2, and Sic Supported Cobalt Catalysts," Chem. Eng. J., 247, 75(2014). crossref(new window)