JOURNAL BROWSE
Search
Advanced SearchSearch Tips
In-vitro Anticancer and Antioxidant Activity of Gold Nanoparticles Conjugate with Tabernaemontana divaricata flower SMs Against MCF -7 Breast Cancer Cells
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
In-vitro Anticancer and Antioxidant Activity of Gold Nanoparticles Conjugate with Tabernaemontana divaricata flower SMs Against MCF -7 Breast Cancer Cells
Preetam Raj, J.P; Purushothaman, M; Ameer, Khusro; Panicker, Shirly George;
  PDF(new window)
 Abstract
Biologically stabilized gold nanoparticles were synthesized from the flower aqueous extract of T. divaricata. The synthesized nanoparticles were characterized by UV-Vis spectrophotometer, Zeta sizer, FTIR and TEM analysis. T. divaricata reduced gold nanoparticles having particle size and potential of 106.532 nm and -10.2 mV, respectively, with a characteristic peak of 550 nm in UV-visible spectrophotometer. FTIR graph after comparison between the crude flower extract and gold nanoparticles showed three major shifts in the functional groups. The morphology and size of the gold nanoparticles were examined by HRTEM analysis, which showed that most of the nanoparticles were nearly spherical with size of 100 nm. The gold nanoparticles synthesized demonstrated potent anticancer activity against MCF-7 cell line. The findings conclude that the antioxidant molecule present in T. divaricata may be responsible for both reduction and capping of gold nanoparticles which possess potential applications in medicine and pharmaceutical fields.
 Keywords
Anticancer;T. divaricata;Bioreduction;Breast cancer;Antioxidant;Gold nanoparticles;
 Language
English
 Cited by
1.
Anti-cancer green bionanomaterials: present status and future prospects, Green Chemistry Letters and Reviews, 2017, 10, 4, 285  crossref(new windwow)
2.
Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics, Applied Microbiology and Biotechnology, 2017, 101, 9, 3551  crossref(new windwow)
 References
1.
Ma, X. and Yu, H., The Yale J. Bio. Med., 79(3), 85(2006).

2.
Tanih, N. F. and Ndip, R. N., J. Scientific. World, 7, (2013).

3.
Amruthraj, N. J., Preetam Raj, J. P. and Lebel, A., Applied Nanoscience 5, 403(2015). crossref(new window)

4.
Yang, H.-C. and Hon, M.-H., J. Microchem., 92, 87(2009). crossref(new window)

5.
Huo, Q., Colloids Surfaces B: Biointerfaces, 59, 1(2007).

6.
Song, J. Y. and Kim, B., Bioprocess. Biosyst. Eng., 32, 79 (2008).

7.
Kumar, V., Yadav, C. S. and Yadav, S. K., J. Chem, Technol. Biotech., 85, 1301(2010). crossref(new window)

8.
Singh, B., Sharma, R. A. and Vyas, G. K., Br., 125-132(2013).

9.
Abel, E. E., John Poonga, P. R. and Panicker, S. G., Appl Nanosci (2015).

10.
Mossman, T., J. Immunol. Methods, 64, 55(1983).

11.
Sinha, K. A., Anal Biochem., 47, 389(1972). crossref(new window)

12.
Ebrahimzadeh, M. A., Nabavi, S. F. and Nabavi, S. M., Pharmacol. (online), 2, 1097(2009).

13.
Rio, D. D., Pellegrini, N., Colombi, B., Bianchi, M., Serafini, M., Torta, F., Tegoni, M., Musci, M. and Brighenti, F., Clin Chem., 49, 690(2003). crossref(new window)

14.
Syed Abeer, JIMSA., 25(3), (2012).

15.
Buzea, C. and Ivan, I., Pacheco Blandino and Kevin Bobbie, Biointerphases., 2(4), MR17-MR172(2007).

16.
SobezakBasavegowda, N., Kupiec, A., Malina, D., Yathirajan, H. S., Keerthi, V. R., Chandrasekar, N., Dinkar, S. and Liny, P., Adv. Mat. Lett., 4, 332(2013).

17.
Elavazhagan, T. and Arunachalam, K. D., Int. J. Nanomed., 6, 1265(2011).

18.
Rajesh, W. K., Jaya, R. L., Niranjan, S. K., Vijay, D. M. and Sahebrao, B. K., Curr. Nanosci., 5, 117(2009). crossref(new window)

19.
Ankamwar, B., Damle, C., Ahmed, A. and Sastry, M., J. Nanosci. Nanotechnol., 5, 1665(2005). crossref(new window)

20.
Sivakumar, P., Nethradevi, C. and Renganathan, S., Asian J. Pharm. Clin. Red., 5(4), 97(2012).

21.
Poornima, K. and Gopalakrishnan, V. K., Chinese Journal of Biology, 1(2), 1(2012).