JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Electrochemical Properties of Activated Carbon Supercapacitors Adopting Hydrophilic Silica and Hydrogel Electrolytes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Korean Chemical Engineering Research
  • Volume 54, Issue 3,  2016, pp.293-298
  • Publisher : The Korean Institute of Chemical Engineers
  • DOI : 10.9713/kcer.2016.54.3.293
 Title & Authors
Electrochemical Properties of Activated Carbon Supercapacitors Adopting Hydrophilic Silica and Hydrogel Electrolytes
Lee, Hae Soo; Park, Jang Woo; Lee, Yong Min; Ryou, Myung Hyun; Kim, Kwang Man; Ko, Jang Myoun;
  PDF(new window)
 Abstract
A hydrogel electrolyte consisting of 6 M KOH aqueous solution, potassium polyacrylate (PAAK, 3 wt.%), and a hydrophilic silica OX50 (1 wt.%) was prepared to use as an electrolyte medium coated on a Scimat separator of activated carbon supercapacitor. The silica particle distributed homogeneously on surface pores of the separator to increase ionic conductivity and electrochemical stability of the hydrogel electrolyte. The silica addition also involved superior specific capacitance even at higher scan rates due to decrease in interfacial resistance between hydrogel electrolyte and activated carbon electrode.
 Keywords
Hydrophilic silica;Hydrogel electrolytes;Activated carbon supercapacitor;Electrochemical properties;
 Language
Korean
 Cited by
 References
1.
Simon, P., Gogotsi, Y. and Dunn, B., "Where Do Batteries End and Supercapacitors Begin?," Science, 343(6176), 1210-1211(2014). crossref(new window)

2.
Yan, J., Wang, Q., Wei, T. and Fan, Z., "Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities," Adv. Energy Mater., 4(4), art. no. 1300816 (2014).

3.
Wang, G., Zhang, L. and Zhang, J., "A Review of Electrode Materials for Electrochemical Supercapacitors," Chem. Soc. Rev., 41(2), 797-828(2012). crossref(new window)

4.
Yu, Z., Tetard, L., Zhai, L. and Thomas, J., "Supercapacitor Electrode Materials: Nanostructures from 0 to 3 Dimensions," Energy Environ. Sci., 8(3), 702-730(2015). crossref(new window)

5.
Beguin, F., Presser, V., Balducci, A. and Frackowiak, E., "Carbon and Electrolytes for Advanced Supercapacitors," Adv. Mater., 26(14), 2219-2251(2014). crossref(new window)

6.
Nishiyama, Y. and Satoh, M., "Solvent- and Counterion-Specific Swelling Behavior of Poly(acrylic acid) Gels," J. Polym. Sci. Part B: Polym. Phys., 38(21), 2791-2800(2000). crossref(new window)

7.
Iwakura, C., Wada, H., Nohara, S., Furukawa, N., Inoue, H. and Morita, M., "New Electric Double Layer Capacitor with Polymer Hydrogel Electrolyte," Electrochem. Solid-State Lett., 6(2), A37-A39(2003). crossref(new window)

8.
Nohara, S., Wada, H., Furukawa, N., Inoue, H., Morita, M. and Iwakura, C., "Electrochemical Characterization of New Electric Double Layer Capacitor with Polymer Hydrogel Electrolyte," Electrochim. Acta, 48(6), 749-753(2003). crossref(new window)

9.
Wada, H., Nohara, S., Furukawa, N., Inoue, H., Sugoh, N., Iwasaki, H., Morita, M. and Iwakura, C., "Electrochemical Characteristics of Electric Double Layer Capacitor Using Sulfonated Polypropylene Separator Impregnated with Polymer Hydrogel Electrolyte," Electrochim. Acta, 49(27), 4871-4875(2004). crossref(new window)

10.
Nohara, S., Asahina, T., Wada, H., Furukawa, N., Inoue, H., Sugoh, N., Iwasaki, H. and Iwakura, C., "Hybrid Capacitor with Activated Carbon Electrode, $Ni(OH)_2$ Electrode and Polymer Hydrogel Electrolyte," J. Power Sources, 157(1), 605-609(2006). crossref(new window)

11.
Lee, K.-T. and Wu, N.-L, "Manganese Oxide Electrochemical Capacitor with Potassium Poly(acrylate) Hydrogel Electrolyte," J. Power Sources, 179(1), 430-434(2008). crossref(new window)

12.
Lee, K.-T., Lee, J.-F. and Wu, N.-L., "Electrochemical Characterizations on $MnO_2$ Supercapacitors with Potassium Polyacrylate and Potassium Polyacrylate-co-Polyacrylamide Gel Polymer Electrolytes," Electrochim. Acta, 54(26), 6148-6153(2009). crossref(new window)

13.
Nam, H.-S., Wu, N.-L., Lee, K.-T., Kim, K. M., Yeom, C. G., Hepowit, L. R., Ko, J. M. and Kim, J.-D., "Electrochemical Capacitances of a Nanowire-Structured MnO2 in Polyacrylate-Based Gel Electrolytes," J. Electrochem. Soc., 159(6), A899-A903(2012). crossref(new window)

14.
Kim, K. M., Nam J. H., Lee, Y.-G., Cho, W. I. and Ko, J. M., "Supercapacitive Properties of Electrodeposited $RuO_2$ Electrode in Acrylic Gel Polymer Electrolytes," Curr. Appl. Phys., 13(8), 1702-1706(2013). crossref(new window)

15.
Ko, J. M., Nam, J. H., Won, J. H. and Kim, K. M., "Supercapacitive Properties of Electrodeposited Polyaniline Electrode in Acrylic Gel Polymer Electrolytes," Synth. Metals, 189(1), 152-156(2014). crossref(new window)

16.
Latifatu, M., Ko, J. M., Lee, Y.-G., Kim, K. M., Jo, J., Jang, Y., Yoo, J. J. and Kim, J. H., "Electrochemical Properties of Activated Carbon Supercapacitor Containing Poly(acrylonitrile) Nonwoven Separator Coated by a Hydrogel Polymer Electrolyte," Korean Chem. Eng. Res., 51(5), 550-555(2013). crossref(new window)

17.
Yoon, C. S., Ko, J. M., Latifatu, M., Lee, H. S., Lee, Y.-G., Kim, K. M., Won, J. H., Jo, J., Jang, Y. and Kim, J. H., "Electrochemical Properties of Activated Carbon Supercapacitor Containing Sulfonated Polypropylene Separator Coated with a Hydrogel Polymer Electrolyte," Korean Chem. Eng. Res., 52(5), 553-557(2014). crossref(new window)

18.
Lee, H. S., Kim, K. M., Jang, Y., Kim, K. Y., Yu, J. J., Kim, J. H. and Ko, J. M., "Electrochemical Properties of Activated Carbon Supercapacitor Adopting Rayon/Poly(ethylene oxide) Separator and a Hydrogel Electrolyte," J. Korean Electrochem. Soc., 18(3), 115-120(2015). crossref(new window)

19.
Kim, K. M., Latifatu, M., Lee, Y.-G., Ko, J. M., Kim, J. H. and Cho, W. I., "Effect of Ceramic Filler-Containing Polymer Hydrogel Electrolytes Coated on the Polyolefin Separator on the Electrochemical Properties of Activated Carbon Supercapacitor," J. Electroceram., 32(2-3), 146-153(2014). crossref(new window)

20.
Kim, K. M., Hepowit, L. R., Kim, J.-C., Lee, Y.-G. and Ko, J. M., "Enhanced Separator Properties by Coating Alumina Nanoparticles with Poly(2-acrylamido-2-methyl-1-propanesulfonic acid) Binder for Lithium-ion Batteries," Korean J. Chem. Eng., 32(4), 717-722(2015). crossref(new window)

21.
http://www.aerosil.com/.

22.
Cho, W.-J., Yeom, C. G., Kim, B. C., Kim, K. M., Ko, J. M. and Yu, K. H., "Supercapacitive Properties of Activated Carbon Electrode in Organic Electrolytes Containing Single- and Double-Cationic Liquid Salts," Electrochim. Acta, 89, 807-813(2013). crossref(new window)

23.
Jung, H. W., Hamenu, L., Lee, H. S., Latifatu, M., Kim, K. M. and Ko, J. M., "Supercapacitive Properties of Activated Carbon Electrode in Electrolyte Solution with a Lithium-Modified Silica Nanosalt," Curr. Appl. Phys., 15(4), 567-570(2015). crossref(new window)

24.
Lee, E. J., Lee, Y. J., Kim, J. K., Lee, M., Yi, J., Yoon, J. R., Song, J. C. and Song, I. K., "Oxygen Group-Containing Activated Carbon Aerosol as an Electrode Material for Supercapacitor," Mater. Res. Bull., 70, 209-214(2015). crossref(new window)

25.
Calvo, E. G., Lufrano, F., Staiti, P., Brigandi, A., Arenillas, A. and Menendez, J. A., "Optimizing the Electrochemical Performance of Aqueous Symmetric Supercapacitors Based on an Activated Carbon Xerogel," J. Power Sources, 241, 776-782(2015).

26.
Obreja, V. V. N., "On the Performance of Supercapacitors with Electrodes Based on Carbon Nanotubes and Carbon Activated Materials - A Review," Physica E, 40(7), 2596-2605(2008). crossref(new window)

27.
Davies, A. and Yu, A., "Material Advancements in Supercapacitors: From Activated Carbon to Carbon Nanotube and Graphene," Can. J. Chem. Eng., 89(6), 1342-1357(2011). crossref(new window)

28.
Gu, W. and Yushin, G., "Review of Nanostructured Carbon Materials for Electrochemical Capacitor Applications: Advantages and Limitations of Activated Carbon, Carbide-Derived Carbon, Zeolite-Templated Carbon, Carbon Aerogels, Carbon Nanotubes, Onionlike Carbon, and Graphene," WIREs Energy Environ., 3(5), 424-473(2014). crossref(new window)

29.
Sugimoto, W., Iwata, H., Yokoshima, K., Murakami, Y. and Takasu, Y., "Proton and Electron Conductivity in Hydrous Ruthenium Oxides Evaluated by Electrochemical Impedance Spectroscopy: The Origin of Large Capacitance," J. Phys. Chem. B, 109(15), 7330-7338(2005). crossref(new window)