JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Thin-Film Composite (TFC) Membranes with Hydrophilic Ethyl Cellulose-g-poly(ethylene glycol) (EP) Substrates for Forward Osmosis (FO) Application
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Korean Chemical Engineering Research
  • Volume 54, Issue 4,  2016, pp.510-518
  • Publisher : The Korean Institute of Chemical Engineers
  • DOI : 10.9713/kcer.2016.54.4.510
 Title & Authors
Thin-Film Composite (TFC) Membranes with Hydrophilic Ethyl Cellulose-g-poly(ethylene glycol) (EP) Substrates for Forward Osmosis (FO) Application
Yu, Yun Ah; Kim, Jin-joo; Kang, Hyo; Lee, Jong-Chan;
  PDF(new window)
 Abstract
Ethyl cellulose-g-poly(ethylene glycol) (EP) was synthesized by esterification of carboxylic acid functionalized methoxy polyethylene glycol (MPEG-COOH) with ethyl cellulose (EC) in order to develop a hydrophilic substrate for thin-film composite (TFC) membrane in a forward osmosis (FO) system. A porous EP substrate, fabricated by a non-solvent induced phase separation method, was found to be more hydrophilic than the EC substrate due to the presence of polyethylene glycol (PEG) side chains in the EP. Since the EP substrate exhibits smaller water contact angles and higher porosity, the structural parameter (S) of TFC-EP is smaller than that of TFC-EC, indicating that internal concentration polarization (ICP) within porous substrates can occur less when TFC-EP is used as a membrane. For example, the water flux value of the TFC-EP is 15.7 LMH, whereas the water flux value of the TFC-EC is only 6.6 LMH. Therefore, we strongly believe that the TFC-EP could be a promising candidate with good FO performances.
 Keywords
Forward osmosis;Thin-film composite membrane;Hydrophilic substrates;Ethyl cellulose;Structural parameter;
 Language
Korean
 Cited by
 References
1.
Raphael, S., "Energy Issues in Desalination Processes," Environ. Sci. Technol., 42, 8193-8201(2008). crossref(new window)

2.
Shannon, M. A., "Science and Technology for Water Purification in the Coming Decades," Nature, 452, 301-310(2008). crossref(new window)

3.
Kessler, J. O. and Moody, C. D., "Drinking Water from Sea Water by Forward Osmosis," Desalination, 18, 297-306(1976). crossref(new window)

4.
Ahmad, A. L., Abdulkarim, A. A., Ismail, S. and Seng, O. B., "Optimization of PES/ZnO Mixed Matrix Membrane Preparation Using Response Surface Methodology for Humic Acid Removal," Korean J. Chem. Eng., 33, 997-1007(2016). crossref(new window)

5.
McGinnis, R. L. and Elimelech, M., "Global Challenges in Energy and Water Supply: The Promise of Engineered Osmosis," Environ. Sci. Technol., 42, 8625-8629(2008). crossref(new window)

6.
Miller, J. E. and Evans, L. R., "Forward Osmosis: A New Approach to Water Purification and Desalination," Sandia National Laboratories Report, 1-51(2006).

7.
Chung, T.-S., "Forward Osmosis Processes: Yesterday, Today and Tomorrow," Desalination, 287, 78-81(2012). crossref(new window)

8.
Chen, G. E., Sun, L., Xu, Z. L., Yang, H., Hunag H. H. and Liu, Y. J., "Surface Modification of Poly(vinylidene fluoride) Membrane with Hydrophilic and Anti-fouling Performance via a Two-step Polymerization," Korean J. Chem. Eng., 32, 2492-2500(2015). crossref(new window)

9.
Lee, K.-W., Han, M.-J. and Nam, S.-T., "Characteristics of Flux Decline in Forward Osmosis Process for Asymmetric Cellulose Membrane," Korean Chem. Eng. Res., 52, 328-334(2014). crossref(new window)

10.
McCutcheon, J. R. and Elimelech, M., "Influence of Concentrative and Dilutive Internal Concentration Polarization on Flux Behavior in Forward Osmosis," J. Membr. Sci., 284, 237-247(2006). crossref(new window)

11.
Gray, G. T., McCutcheon, J. R. and Elimelech, M., "Internal Concentration Polarization in Forward Osmosis: Role of Membrane Orientation," Desalination, 197, 1-8(2006). crossref(new window)

12.
Mehta, G. D. and Loeb, S., "Performance of Permasep B-9 and B-10 Membranes in Various Osmotic Regions and At High Osmotic Pressures," J. Membr. Sci., 4, 335-349(1979).

13.
Yip, N. Y., Tiraferri, A., Phillip, W. A., Schiffman, J. D. and Elimelech, M., "High Performance Thin-film Composite Forward Osmosis Membrane," Environ. Sci. Technol., 44, 3812-3818(2010). crossref(new window)

14.
Chou, S., Shi, L., Wang, R., Tang, C. Y., Qiu, C. and Fane, A. G., "Characteristics and Potential Applications of a Novel Forward Osmosis Hollow Fiber Membrane," Desalination, 261(3), 365-372(2010). crossref(new window)

15.
Widjojo, N., Chung, T.-S., Weber, M., Maletzko, C. and Warzelhan, V., "The Role of Sulphonated Polymer and Macrovoid-Free Structure in the Support Layer for Thin-Film Composite (TFC) Forward Osmosis (FO) Membranes," J. Membr. Sci., 383(1-2), 214-223(2011). crossref(new window)

16.
Ma, N., Wei, J., Qi, S., Zhao, Y., Gao, Y. and Tang, C. Y., "Nanocomposite Substrates for Controlling Internal Concentration Polarization in Forward Osmosis Membranes," J. Membr. Sci., 441, 54-62(2013). crossref(new window)

17.
Emadzadeh, D., Lau, W. J., Ismail, A. F. and Rahbari-Sisakht, M., "Synthesis and Characterization of Thin Film Nanocomposite Forward Osmosis Membrane with Hydrophilic Nanocomposite Support to Reduce Internal Concentration Polarization," J. Membr. Sci., 449, 74-85(2014). crossref(new window)

18.
Emadzadeh, D., Lau, W. J. and Ismail, A. F., "Synthesis of Thin Film Nanocomposite Forward Osmosis Membrane with Enhancement in Water Flux without Sacrificing Salt Rejection," Desalination, 330, 90-99(2013). crossref(new window)

19.
Emadzadeh, D., Lau, W. J., Matsuura, T., Rahbari-Sisakht, and Ismail, A. F., "A Novel Thin Film Composite Forward Osmosis Membrane Prepared from Psf-Tio2 Nanocomposite Substrate for Water Desalination," Chem. Eng. J., 237, 70-80(2014). crossref(new window)

20.
Klemm, D., Heublein, B., Fink, H.-P. and Bohn, A., "Cellulose: Fascinating Biopolymer and Sustainable Raw Material," Angew. Chem. Int. Ed. Engl., 44, 3358-3393(2005). crossref(new window)

21.
Tiraferri, A., Yip, N. Y., Straub, A. P., Castrillon, S. R.-V. and Elimelech, M., "A Method for the Simultaneous Determination of Transport and Structural Parameters of Forward Osmosis Membranes," J. Membr. Sci., 444, 523-538(2013). crossref(new window)

22.
Neises, B. and Steglich, W., "Simple Method for the Esterification of Carboxylic Acids," Angew. Chem. Int. Ed. Engl., 17, 522-524(1978) crossref(new window)

23.
Widjojo, N., Chung, T.-S., Weber, M., Maletzko, C. and Warzelhan, V., "The Role of Sulphonated Polymer and Macrovoid-Free Structure in the Support Layer for Thin-Film Compoiste (TFC) Forward Osmosis (FO) Membranes," J. Membr. Sci., 383(1-2), 214-223(2011). crossref(new window)

24.
Ghosh, A. K., Jeong, B. -H., Huang, X. and Hoek, E. M. V., "Impacts of Reaction and Curing Conditions on Polyamide Composite Reverse Osmosis Membrane Properties," J. Membr. Sci., 311, 34-45(2008). crossref(new window)

25.
Ming, X., Price, W. E. and Nghiem, L. D., "Rejection of Pharmaceutically Active Compounds by Forward Osmosis: Role of Solution pH and Membrane Orientation," Sep. Purif. Technol., 93, 107-114(2012). crossref(new window)

26.
Han, G., Chung, T.-S., Toriida, M. and Tamai, S., "Thin-Film Composite Forward Osmosis Membranes with Novel Hydrophilic Supports for Desalination," J. Membr. Sci., 423, 543-555(2012).

27.
Zhengzhong, Z. Lee, J. Y. and Chung, T.-S., "Thin Film Composite Forward-Osmosis Membranes with Enhanced Internal Osmotic Pressure for Internal Concentration Polarization Reduction," Chem. Eng. J., 249, 236-245(2014). crossref(new window)

28.
Han, J., Cho, Y. H., Kong, H., Han, S. and Park, H. B., "Preparation and Characterization of Novel Acetylated Cellulose Ether (Ace) Membranes for Desalination Applications," J. Membr. Sci., 428, 533-545(2013). crossref(new window)