Advanced SearchSearch Tips
Bubble Properties in Bubble Columns with Electrolyte Solutions
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Korean Chemical Engineering Research
  • Volume 54, Issue 4,  2016, pp.543-547
  • Publisher : The Korean Institute of Chemical Engineers
  • DOI : 10.9713/kcer.2016.54.4.543
 Title & Authors
Bubble Properties in Bubble Columns with Electrolyte Solutions
Yoo, D.J.; Lim, D.H.; Jeon, J.S.; Yang, S.W.; Kang, Y.;
  PDF(new window)
Bubble properties such as size (chord length) and rising velocity were investigated in a bubble column with electrolyte solutions, of which diameter was 0.152m and 2.5m in height, respectively. The size and rising velocity of bubbles were measured by using the dual electrical resistivity probe method. Effects of gas and liquid velocities and ionic strength of liquid phase on the size and rising velocity of bubbles were determined. The bubble size increased with increasing gas velocity but decreased with increasing liquid velocity or ionic strength of liquid phase. The rising velocity of bubbles increased with increasing gas velocity and decreased with increasing ionic strength of liquid phase, however, it showed a slight maximum value with varying liquid velocity. The size and rising velocity of bubbles were well correlated with operating variables.
Bubble column;Electrolyte solution;Ionic strength;Bubble size;Rising velocity;
 Cited by
Deckwer, W. D., Bubble column Reactors, John Wiley & Sons, England, 239-267(1992).

Ferreira, A., Pereira, G., Teixeira, J. A. and Rocha, F., "Statistical Tool Combined with Image Analysis to Characterize Hydrodynamics and Mass Transfer in a Bubble Column," Chem. Eng. J., 180, 216-228(2012). crossref(new window)

Lim, D. H., Park, J. H., Kang, Y. and Jun, K. W., "Structure of Bubble Holdups in a Viscous Slurry Bubble Column with Low Surface Tension Media," Fuel Proce. Technol., 108, 2-7(2013). crossref(new window)

Gan, Z. W., Yu, S. C. M. and Law, A. W. K., "PDA Measurements in a Three-phase Bubble Column," AIChE J., 59, 2286-2307(2013). crossref(new window)

Lim, D. H., Yoo, D. J. and Kang, Y., "Characteristics of Gas-liquid Mass Transfer and Interfacial Area in a Bubble Column," Korean Chem. Eng. Res., 53, 315-320(2015). crossref(new window)

Dudukovic, M. P., Lorrachi, F. and Mill, P. L., "Multi Phase Catalytic Reactors : A Perspective on Current Knowledge and Future Trends," Catalysis Review, 44, 12-246(2002).

Krishna, R. and Sie, S. T., "Design and Scale-up of Fischer-Tropsch Bibble Column Slurry Reactor," Fuel Proce. Technol., 64, 73-105(2000). crossref(new window)

Shin, I. S., Son, S. M., Kim, U. Y., Kang, Y., Kim, S. D. and Jung, H., "Multiple Effects of Operating Variables on Bubble Properties in Three-phase Slurry Bubble Columns," Korean J. Chem. Eng., 26, 587-591(2009). crossref(new window)

Jin, H. R., Lim, D. H., Lim, H., Kang, Y., Jung, H. and Kim, S. D., "Demarcation of Large and Small Bubbles in Viscous Slurry Bubble Columns," I & EC Research, 51, 2062-2069(2012).

Kang, Y., Cho, Y. J., Woo, K. J. and Kim, S. D., "Bubble Properties and Pressure Fluctuations in Pressurized Bubble Columns," Chem. Eng. Sci., 411-419(2000).

Son, S. M., Song, D. S., Lee, C. K., Kang, S. H., Kang, Y. and Kusakabe, K., "Bubbling Behavior in Gas-liquid Countercurrent Bubble Column Bioreactors," J. Chem. Eng. Japan., 37, 990-998(2004). crossref(new window)

Al Taweel, A. M., Idhbeaa, A. O. and Ghanem, A., "Effect of Electrolytes on Interphase Mass Transfer in Microbubble-sparged Airlift Reactors," Chem. Eng. Sci., 100, 474-485(2013). crossref(new window)

Weissenborn, P. and Pugh, R., "Surface Tension of Aqueous Solutions of Electrolytes : Relationship with Ion Hydration, Oxygen Solubility and Bubble Coalescence," J. Colloid & Interface, 184, 550-563(1996). crossref(new window)

Craig, V. S. J., Ninham, B. W. and Pashley, R. M., "The Effect of Electrolytes on Bubble Coalescence in Water," J. Phys. Chem., 97, 10192-10197(1993). crossref(new window)

Chang, S. K., Kang, Y. and Kim, S. D., "Mass Transfer in Two and Three-phase Fluidized Beds," J. Chem. Eng. Japan, 18, 524-530(1988).

Weissenborn, P. K. and Pugh, R. J., "Surface Tension and Bubble Coalescence Phenomena of Aqueous Solutions of Electrolytes," Langmuir, 11, 1422-1426(1955).

Alves, S. S., Orvalho, S. P. and Vasconcelos, J. M. T., "Effect of Bubble Contamination on Rise Velocity and Mass Transfer," Chem/Eng. Sci., 60, 1-9(2005).